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Fig. 1: We propose a first-of-its-kind framework for the development of geospatial foun-
dation models from raw satellite imagery, which we leverage to generate the Prithvi-100M
model. The framework encompasses (1) the sampling, filtering. and pre-processing of raw
geospatial data and the self-supervised foundation model pretraining, (2) the fine-tuning to
specific downstream applications, and (3) the inference process.



Efficient Data Sampling

Fig. 2: Geo-regions from the contignous U.S. are clustered into one of 20 different categories
based on temperature and precipitation data.
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ViT architecture +
3D Patch embedding +
3D positional encoding

The masked autoencoder (MAE) structure for pre-training Prithvi on large-scale multi-
temporal and multi-spectral satellite images.

Our main modifications to the ViT architecture are the 3D positional embedding and the 3D
patch embedding, which are required to deal with the spatiotemporal data.
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Fig. 4: Pre-training and fine-tuning in Prithvi for various types of downstream tasks.
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(a) MSE training and valida- (b) Reconstruction results on images unseen during train-
tion loss curves during pretraining ing (different locations) with Prithvi model with ViT-
accompanied by the associated val- base backbone. Here we show the RGB bands together
ues of the learning rate scheduler. (BO4, BO3. and B02, respectively) for better visualization.
Training loss decreases to ().0283. although the model also predicts B05, B06. and BOT.
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(¢) Reconstruction results on images unseen during training (different locations) with Prithvi model

for bands B0O6 and BO7 for different masking ratios with ViT-base backbone. Here, we show a single
time step of an input image unseen during training.

Fig. 5: Pretraining results of Prithvi using 1TB of HLS data from the contignous US.
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(a) Performance based on (1) pretrained, (2) (b) Data efficiency of pretrained Prithvi in
randomly initialized. and (3) frozen encoder terms of reduction of required labeled images
weights. Confidence bands represent the for fine-tuning in the flood mapping task
standard deviation across 5 different seeds. using ViT-large backbone.

Fig. 9: Evaluation of Prithvi on SenlFloodsl1 test set regarding (a) the performance and
(b) the data efficiency using the ViT-large backbone.
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standard deviation across 5 different seeds. tion task using ViT-base backbone.




Prithvi U-Net

(Classes Accuracy loU Accuracy loU

Natural Vegetation 46.89% 0.4038 63.67% 0.4578
Forest 66.38% 04747 | TL.72% 04772
Corn 65.47% 0.5491 63.33% 0.5226
Soybeans 67.46%  0.5297 | 66.77%  0.5168
Wetlands 58.91% 0.4020 60.36% 0.4110
Developed /Barren 56.49%  0.3611 | 60.23%  0.4637
Open Water 90.37% 0.6804 | 87.76%  0.7596
Winter Wheat 67.16%  0.4967 | 66.39%  0.4950
Alfalfa 66.75% 0.3084 59.03% 0.3848
Fallow/Idle Cropland | 59.23%  0.3493 | 52.94%  0.3599
Cotton 66.94% 0.3237 45.30% 0.3258
Sorghum 73.56%  0.3283 | 61.53%  0.3910
Other 47.12% 0.3427 15.90% 0.3268
Mean 64.06%  0.426 | 61.91% 0.420

Table 4: Prithvi model performance for the crop segmentation
based on three input timestep compared to a U-Net baseline.
For this study. Prithvi was fine-tuned on the CDL dataset for
80 epochs with three input time steps. and U-Net was trained
for 100 epochs
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LARGE LANGUAGE MODELS AS OPTIMIZERS
Code at https://github.com/ google-deepmind/opro.



https://github.com/

https://aipapersacademy.com/large-language-models-as-optimizers/

Goal = maximize the accuracy over a dataset
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