Manifold Learning and Artificial Intelligence
Lecture 8

A Path to Protein Design and Disease Mechanism (1)
Protein Language Model

Momiao Xiong, University of Texas School of Public Health
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Extract Protein Variation into
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Joint Amino Acid Variation and Expression Embedding
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Graphic Neural Networks (GNN)
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Probably the most common application of
representing data with graphs is using
molecular graphs to represent chemical
structures

The caffeine molecule

chemical name: 1, 3, 7-trimethylxanthine
chemical formula: CgH1gN4O2

C — carbon atom
H — hydrogen atom
N — nitrogen atom

O — oxygen atom
CH3 — methyl radical



Graphic Neural Network (GNN)

« Tasks of GNN: Graph level, node level and edge level

* Aggregation ) average messages

—— NODE from neighbors -
M]v MSG(hl 1 hl 1 l 1 g .A‘
AGGL = AGG'(y M7 1| e J\r v e
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INPUT GRAPH A

Sharma 2020, Introduction to Graph Neural Networks



Pipelines of Graphic Neural Networks

Input Graph

GNN blocks
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Prediction

Distill, 2021; A Gentle Introduction to Graph Neural Networks. https://distill.pub/2021/gnn-intro



Directed Acyclic Graph Neural Networks

« ADAG is adirected graph without cycles

« updating node representations based on those of all their predecessors sequentially, such
that nodes without successors digest the information of the entire graph.

AGGL =) ab, (k™ ki)l
ueP(v)

ab, (RS hL) = sgg‘g)rr(lva)x((wf)Thffl

+(W§)Thﬁ + (Wé)Ty(u, 1))

hl, = FY(hi™1, AGGL) = GRUY (™Y, AGGY)
he = FC(max — pool(ll5 ht,)

VvET FIGURE 1. An example phenotype for a Directed Acyclic Graph Neural

% Network (DAG-NN).
I max — pool(ll} AL)) ork (DAG-NN)
S

ue P(v) = set of preceeding nodes

This also allows producing a single output for the whole graph



Drug efficacy is determined based on the ability to reverse altered gene expression
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Embedding Test Statistics

I = (zm o ZW)TA_l(Zm o Zw)' T"’X%k)

K: dimension of Embedding

Causal Test for Embedding



Test Causal Relationship between Drug and Disease GNNSs

Fake Sample

Causal Model: Y=Disease GNN}
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Test for Causation between Drug and Disease Networks

e Define

Y =output of Disease GNN,
X =output of drug GNN
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Xiong MM (2022) Atrtificial Intelligence and Causal Inference. CRC Press
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GPN (Genomic Pre-trained Network)
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A. Training
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A Path to Uncovering Mechanism of Complex Trait
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A Probe-based spatial transcriptome
(merFISH, STARmap, and seqFISH)
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18. Protein Language Model

ESM2:Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences

* the UniParc database

 Number of amino acid sequences: 250 millions
ProGen: Language Modeling for Protein Generation
Ali Madani et al. 2020

« 1.2 billion parameter conditional language
 Number of amino acid sequence: 280 millions

Generative modeling for protein engineering is key to solving fundamental
problems in synthetic biology, medicine, and material science



18.1. ProGene

18.1.1. Generating proteins with desired properties

* the development of new enzymes, antibody, therapies, and sensors

However, leading experimental techniques for protein engineering such as directed

evolution (Arnold, 1998) still rely on heuristics and random mutations to select initial
sequences for rounds of evolution.

* The raw amino acid sequence encodes a protein. This chain of amino acids

folds in ways that exhibit local (secondary) and global (tertiary) structure, which
In turn determines unique functions.

Unfortunately, obtaining three-dimensional structural information for proteins is
expensive and time consuming. Consequently, there are three orders of
magnitude more raw sequences than there are sequences with structural
annotations, and protein sequence data grow exponentially.



By conditioning on these tags, ProGen provides a new method for

protein generation that can be tailored for desired properties

@ Data Availability @ Desired Arguments

280M Organism | Homo sapiens
ce® : e
a . sec\“e“ Function | Actin-binding
E_ waem
& 20M Location Cytoplasm

Protein Structures —
Process | Cardiac disease

Controlled Sequence Generation

YMIQEE + FYUKQCKM |-

U

ProGen

2010 2020 g f
Year Amino Acid YMIQEE

a) Protein sequence data is growing exponentially as compared to structural

Generated Sequences

Inferred Result

Structure

Function

data. b) We utilize protein sequence data along with and keyword tags to
develop a conditional language model: ProGen.

Ali Madani et al. 2020 ProGen: Language Modeling for Protein Generation

‘



18.1.2. Methods

* Notations
Amino Acid Sequence: a = (a;,a;, ,a, )
Conditional Tag: ¢ = (€4, €2, ..., €p,), N =14 + 1N,
Sequence: x = (c; a)
Distribution:P(x) = [IiL41 P(x;|x<;)
Dataset: D = [x1, ..., xPl]

* Loss Function

T2 | n; —
LD)==) ~—» " logPe(xf |x)
1=

k=1MN;
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https://arxiv.org/abs/1706.03762

Attention Mechanism
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Attention (Q,K,V) = Softmax(

hj = Z = Attention (XW;', X\W?, XW})

https://zhuanlan.zhihu.com/p/47282410
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Residual Connection and Layer Normalization
H = Multihead (X,m) + X

H = LayerNorm (H)

Position-wise FFN.

The position-wise FFN is a fully connected feed-forward module that
operates separately and identically on each position

FFN(h) = ReLU(HW! + b1)W?2 + b?
the outputs of previous layer:

H; = |hy, .., hy,| Wl € R™Pr, W% € RPr*™ bl € R”f,b%? € R™



Residual Connection and Normalization

/_\
o (o h+ F(h)

h' = LayerNorm(SelfAttention(hY) + h())

h*D = LayerNorm(FFN(h') + h")

X;;1 = LayerNorm(FFN(H;) + H;)
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Scores

Scores (Xy) = LayerNorm (X )Wy,cab

During training, these scores are the inputs of a cross entropy
loss function. During generation, the scores corresponding

to the final token are normalized with a softmayx,

yielding a distribution for sampling a new token.



TRANSFORMER MODELS: AN INTRODUCTION AND CATALOG

Xavier Amatriain
Los Gatos, CA 95032
Xavier@amatriain.net

arXiv:2302.07730



Cover (One Topic at One Lecture)
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 ProGen Generate functional protein sequences
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A New Paradigm for Drug Discovery and Drug Repurposing
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