
Manifold Learning and Artificial Intelligence
Lecture 8

A Path to Protein Design and Disease Mechanism (1)
Protein Language Model

• Time: 9:00 pm, US East Time, 01/14/2023

• 10:00 am, Beijing Time. 01/15/2023

• Zoom
https://uwmadison.zoom.us/w/93316139423?tk=wfbmsTfN2fgERto_HI1WKtBzh94d3HO02XVRD
Cexqd8.DQMAAAAVuhNJnxZ2dGVCbllIYlR3ZWJBNHl5LXlYMjBnAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA&pwd=Q0NVWFYvRFg5RmxCNkwxMmYrbW41dz09

Github Address: https://ai2healthcare.github.io/

Momiao Xiong, University of Texas School of Public Health

https://uwmadison.zoom.us/w/93316139423?tk=wfbmsTfN2fgERto_HI1WKtBzh94d3HO02XVRDCexqd8.DQMAAAAVuhNJnxZ2dGVCbllIYlR3ZWJBNHl5LXlYMjBnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&pwd=Q0NVWFYvRFg5RmxCNkwxMmYrbW41dz09
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Function Annotation

Stability Prediction

Fitness Prediction

MASLSCV



Antibody 



Extract Protein Variation into 

embedding  and reduce it via VAE



Expression Value

Joint Amino Acid Variation and Expression Embedding
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Infer Protein Causal Networks
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Drug Target Causal Networks
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Graphic Neural Networks (GNN)

Probably the most common application of 
representing data with graphs is using 
molecular graphs to represent chemical 
structures



Graphic Neural Network (GNN) 

• Tasks of GNN:  Graph level, node level and edge level

• Aggregation

ℎ𝑣
𝑙 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑙(ℎ𝑣

𝑙−1, 𝐴𝐺𝐺𝑣
𝑙)

𝐴𝐺𝐺𝑣
𝑙 = 𝐴𝐺𝐺𝑙( 𝑀𝑗𝑣

𝑙−1|𝑗 ∈ 𝒩(𝜐)
𝑨𝑮𝑮𝒗

𝒍𝒉𝒗
𝒍−𝟏

𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒍

Sharma 2020, Introduction to Graph Neural Networks

𝑀𝑗𝑣
𝑙−1 = 𝑀𝑆𝐺(ℎ𝑗

𝑙−1, ℎ𝑣
𝑙−1, 𝑒𝑗𝑣

𝑙−1)



Pipelines of Graphic Neural Networks

Distill, 2021; A Gentle Introduction to Graph Neural Networks. https://distill.pub/2021/gnn-intro 

𝒉𝑮 = 𝑹𝑬𝑨𝑫𝑶𝑼𝑻( 𝒉𝒗
𝑳 , 𝒗 ∈ 𝓥 )



Directed Acyclic Graph Neural Networks 

• updating node representations based on those of all their predecessors sequentially, such 
that nodes without successors digest the information of the entire graph.

• A DAG is a directed graph without cycles

𝐴𝐺𝐺𝑣
𝑙 =෍

𝑢∈𝒫(𝑣)
𝛼𝑣𝑢
𝑙 (ℎ𝑣

𝑙−1, ℎ𝑢
𝑙 )ℎ𝑢

𝑙

𝛼𝑣𝑢
𝑙 ℎ𝑣

𝑙−1, ℎ𝑢
𝑙 = softmax

𝑢∈𝒫(𝑣)
( 𝑤1

𝑙 𝑇
ℎ𝑣
𝑙−1

+ 𝑤2
𝑙 𝑇

ℎ𝑢
𝑙 + 𝑤3

𝑙 𝑇
𝑦(𝑢, 𝑣))

ℎ𝑣
𝑙 = 𝐹𝑙 ℎ𝑣

𝑙−1, 𝐴𝐺𝐺𝑣
𝑙 = 𝐺𝑅𝑈𝑙 ℎ𝑣

𝑙−1, 𝐴𝐺𝐺𝑣
𝑙

ℎ𝐺 = 𝐹𝐶(max − pool
𝑣∈𝒯

(∥0
𝐿 ℎ𝑣

𝑙 , )

∥ max − pool
𝑢∈𝑆

(∥0
𝐿 ෨ℎ𝑢

𝑙 ))

This also allows producing a single output for the whole graph 

𝒫 𝑣 = 𝑠𝑒𝑡 𝑜𝑓𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠



Drug efficacy is determined based on the ability to reverse altered gene expression
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Embedding Test Statistics

𝑻 = ഥ𝒁𝒎 − ഥ𝒁𝒘
𝑻
𝜦−𝟏 ഥ𝒁𝒎 − ഥ𝒁𝒘 , 𝐓~𝝌(𝒌)

𝟐

K: dimension of Embedding

Causal Test for Embedding



Test Causal Relationship between Drug and Disease GNNs 

Z

Random Noise

G(Z,X)
Neural 

Networks

Y’=G(Z,X)Fake Sample

X

Discriminator 
Neural 

Networks

Real Data

Real 
or
Fake

X Y (Effect)

Drug GNN Disease GNN

Y=Disease GNN

X=Drug  GNN

𝐘 = 𝐟𝐲(𝐗,𝑵𝒚), 𝐗 ⫫ 𝐍𝐲

Causal Model:



Test for Causation between Drug and Disease Networks

• Define

𝑌 =output of Disease GNN, 
𝑋 =output of drug GNN 

𝑋, 𝑌

Noise 

𝑪𝑮𝑨𝑵𝑿→𝒀
෡𝒀 = 𝒇𝒀(𝑿,𝑵𝒀)

𝑋, ෠𝑌 𝑪𝟐𝑺𝑻𝑿→𝒀 𝒕𝑿→𝒀

𝑻 =
ො𝒕𝑿→𝒀 − ො𝒕𝒀→𝑿

𝟐

𝝈𝟐
~𝝌(𝟏)

𝟐

𝑪𝑮𝑨𝑵𝒀→𝑿
෡𝑿 = 𝒇𝑿(𝒀,𝑵𝑿)

𝑌, ෠𝑋 𝑪𝟐𝑺𝑻𝒀→𝑿 𝒕𝒀→𝑿

𝜎2 = 2
1

4𝑛𝑡𝑒
−෍

𝑖=1

𝑛𝑡𝑒 𝑤𝑖 − Ƹ𝑡𝑋→𝑌 𝑔𝑖 − Ƹ𝑡𝑌→𝑋
𝑛𝑡𝑒 − 1

𝑌, 𝑋

Noise

Xiong MM (2022) Artificial Intelligence and Causal Inference. CRC Press



𝑋, 𝑌

𝑪𝑮𝑨𝑵𝒀→𝑿
෡𝑿 = 𝒇𝑿(𝒀,𝑵𝑿)

𝑪𝟐𝑺𝑻𝒀→𝑿

𝑌 =output of Disease Z, 
𝑋 =output of Normal Z

Noise

𝑪𝑮𝑨𝑵𝑿→𝒀
෡𝒀 = 𝒇𝒀(𝑿,𝑵𝒀)

𝑋, ෠𝑌 𝑪𝟐𝑺𝑻𝑿→𝒀 𝒕𝑿→𝒀

𝑻 =
ො𝒕𝑿→𝒀 − ො𝒕𝒀→𝑿

𝟐

𝝈𝟐
~𝝌(𝟏)

𝟐

𝑌, ෠𝑋 𝒕𝒀→𝑿
𝑌, 𝑋
Noise

Test Causation of Protein on Disease (or Trait)



𝑋, 𝑌

𝑪𝑮𝑨𝑵𝒀→𝑿
෡𝑿 = 𝒇𝑿(𝒀,𝑵𝑿)

𝑪𝟐𝑺𝑻𝒀→𝑿

𝑌 = Trait, 
𝑋 = Embedding (DNAs)

Noise

𝑪𝑮𝑨𝑵𝑿→𝒀
෡𝒀 = 𝒇𝒀(𝑿,𝑵𝒀)

𝑋, ෠𝑌 𝑪𝟐𝑺𝑻𝑿→𝒀 𝒕𝑿→𝒀

𝑻 =
ො𝒕𝑿→𝒀 − ො𝒕𝒀→𝑿

𝟐

𝝈𝟐
~𝝌(𝟏)

𝟐

𝑌, ෠𝑋 𝒕𝒀→𝑿
𝑌, 𝑋

Noise

Test Causation of Gene with Trait



Semantic Change

𝒘𝟏|𝒁𝒏𝒐𝒓𝒎 − 𝒁𝒅𝒊𝒔𝒆𝒂𝒔𝒆| + 𝒘𝟐𝒁

𝑍

𝑪𝑮𝑨𝑵𝒀→𝑿
෡𝑿 = 𝒇𝑿(𝒀,𝑵𝑿)

𝑪𝟐𝑺𝑻𝒀→𝑿

𝑌 = Trait, 
𝑋 = 𝒘𝟏|𝒁𝒏𝒐𝒓𝒎 − 𝒁𝒅𝒊𝒔𝒆𝒂𝒔𝒆| + 𝒘𝟐𝒁

Noise

𝑪𝑮𝑨𝑵𝑿→𝒀
෡𝒀 = 𝒇𝒀(𝑿,𝑵𝒀)

𝑋, ෠𝑌 𝑪𝟐𝑺𝑻𝑿→𝒀 𝒕𝑿→𝒀

𝑻 =
ො𝒕𝑿→𝒀 − ො𝒕𝒀→𝑿

𝟐

𝝈𝟐
~𝝌(𝟏)

𝟐

𝑌, ෠𝑋 𝒕𝒀→𝑿
𝑌, 𝑋
Noise

Test Causal of Protein (Gene) 

with Trait (Disease)



DNA

Gene Expression
Causal Networks

Methylation
Network

Protein Expression
Causal Network

Metabolite
Causal Network

Trait or Disease
(Network)

A Path to Uncovering Mechanism of Complex Trait



Accurate inference of genome-wide spatial expression with iSpatial

Manifold 
alignment



Evolutionary Perspective

Natural Language Model

Constraints
Mutation
Selection

Mutation Phenotype
Fitness (Grama)
Effect, Escape 
(Semantics)

Embedding
Energy

Distance
Variant 

Prediction

Test association (or 
causation) of embedding 

with traits

Multimodal Omics 
Integration (Tissue and 

single cell)

Causal Networks (DAG)
Node Representation

(Single variable,
Vector)

Pair-wise Causal Analysis
(With or Without 

Confounders)

Mutations, Moleculs, Vaccine
DAG on Omics

Phenotypes (Network)

Vaccine Design
Pan-Vaccine 

nanoparticle vaccines
multi-epitope vaccine

Antybody and Protein 
Design, Conditional  VAE

Epitope, ACE2 Binding
Growth Score

Latent Space Optimiation
GNN seq and struc Co-design

GNN for  Network 
Aggregation and Embedding

Causal relations between Cells 
and Phenotypes

Cause-based vaccine and
Treatment Evaluation

With Confouners



18. Protein Language Model 

ESM2:Biological structure and function emerge from scaling  

unsupervised learning to 250 million protein sequences

• the UniParc database

• Number of amino acid sequences: 250 millions

ProGen: Language Modeling for Protein Generation

Ali Madani et al. 2020

• Number of amino acid sequence: 280 millions 

Generative modeling for protein engineering is key to solving fundamental 

problems in synthetic biology, medicine, and material science

• 1.2 billion parameter conditional language



18.1. ProGene
18.1.1. Generating proteins with desired properties

• the development of new enzymes, antibody, therapies, and sensors

• However, leading experimental techniques for protein engineering such as directed 
evolution (Arnold, 1998) still rely on heuristics and random mutations to select initial 
sequences for rounds of evolution.

• The raw amino acid sequence encodes a protein. This chain of amino acids 

folds in ways that exhibit local (secondary) and global (tertiary) structure, which 

in turn determines unique functions.

• Unfortunately, obtaining three-dimensional structural information for proteins is 

expensive and time consuming. Consequently, there are three orders of 

magnitude more raw sequences than there are sequences with structural 

annotations, and protein sequence data grow exponentially.



a) Protein sequence data is growing exponentially as compared to structural 

data. b) We utilize protein sequence data along with and keyword tags to 

develop a conditional language model: ProGen.

Ali Madani et al. 2020     ProGen: Language Modeling for Protein Generation

• By conditioning on these tags, ProGen provides a new method for 

protein generation that can be tailored for desired properties



18.1.2. Methods

• Notations

Amino Acid Sequence: 𝒂 = 𝒂𝟏, 𝒂𝟐, , 𝒂𝒏𝒂

Conditional Tag: 𝒄 = 𝒄𝟏, 𝒄𝟐, … , 𝒄𝒏𝒄 , 𝒏 = 𝒏𝒂 + 𝒏𝒄

Sequence: 𝒙 = 𝒄; 𝒂

Distribution:𝑷 𝒙 = ς𝒊=𝟏
𝒏 𝑷(𝒙𝒊|𝒙<𝒊)

Dataset: 𝑫 = 𝒙𝟏, … , 𝒙|𝑫|

• Loss Function

𝐿 𝐷 = −෍
𝑘=1

|𝐷| 1

𝑛𝑖
෍

𝑖=1

𝑛𝑖
log 𝑃𝜃(𝑥𝑖

𝑘 |𝑥<𝑖
𝑘 )



𝑥𝑖 =

0
⋮
1
⋮
0

𝑋 =
1 ⋯ 0
⋮ ⋮ ⋮
0 ⋯ 1

= . 𝑛×𝑑



Ashish Vaswani et al. 2017

Attention Is All You Need

arXiv:1706.03762

https://arxiv.org/search/cs?searchtype=author&query=Vaswani%2C+A
https://arxiv.org/abs/1706.03762


queries 𝑸 ∈ 𝑹𝑵×𝑫𝒌 , 𝑲 ∈ 𝑹𝑴×𝑫𝒌,𝑽 ∈ 𝑹𝑴×𝑫𝒗

Matrices:

Attention 𝑸,𝑲, 𝑽 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝑲𝑻

𝑫𝒌
𝐕 = 𝐀𝐕

𝑨 = 𝜶𝒊𝒋
𝑵×𝑴

𝜶𝒊𝒋 =
𝐞𝐱𝐩{σ𝒍=𝟏

𝑫𝒌 𝒒𝒊𝒍𝒌𝒋𝒍}

σ𝒋′=𝟏
𝑴 𝐞𝐱𝐩{σ𝒍=𝟏

𝑫𝒌 𝒒𝒊𝒍𝒌𝒋′𝒍}

Attention Mechanism

𝒉𝒊 =෍
𝒋
𝜶𝒊𝒋𝑽𝒋



https://zhuanlan.zhihu.com/p/47282410

𝑊𝑄 = 𝑊𝑗
1, 𝑄 = 𝑋𝑊𝑗

1

𝑊𝑘 = 𝑊𝑗
2, 𝐾 = 𝑋𝑊𝑗

2

𝑊𝑉 = 𝑊𝑗
3, 𝑉 = 𝑋𝑊𝑗

3



https://zhuanlan.zhihu.com/p/47282410

Attention 𝑄,𝐾, 𝑉 =

ℎ𝑗 = 𝑍 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑋𝑊𝑗
1, 𝑋𝑊𝑗

2, 𝑋𝑊𝑗
3)



Multihead



ℎ𝑗 = 𝑧𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑋𝑊𝑗
1, 𝑋𝑊𝑗

2, 𝑋𝑊𝑗
3)

= ℎ0

𝑍 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑋,𝑚
= ℎ0, … , ℎ𝑚−1 𝑊0



Position-wise FFN. 

The position-wise FFN is a fully connected feed-forward module that 
operates separately and identically on each position

𝑭𝑭𝑵 𝒉 = 𝑹𝒆𝑳𝑼 ഥ𝑯𝑾𝟏 + 𝒃𝟏 𝑾𝟐 + 𝒃𝟐

the outputs of previous layer: 

ഥ𝑯𝒊 = ഥ𝒉𝟏, … , ഥ𝒉𝒎 ,𝑾𝟏 ∈ 𝑹𝒎×𝑫𝒇 ,𝑾𝟐 ∈ 𝑹𝑫𝒇×𝒎, 𝒃𝟏 ∈ 𝑹𝑫𝒇 , 𝒃𝟐 ∈ 𝑹𝒎

Residual Connection and Layer Normalization
𝐻 = 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 𝑋,𝑚 + 𝑋

ഥ𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐻)



Residual Connection and Normalization

h F(h) +
𝒉 + 𝑭(𝒉)

𝒉′ = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎(𝑺𝒆𝒍𝒇𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝒉 𝒍 ) + 𝒉 𝒍 )

𝒉(𝒍+𝟏) = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎(𝑭𝑭𝑵 𝒉′ + 𝒉′)

𝑿𝒊+𝟏 = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎(𝑭𝑭𝑵 ഥ𝑯𝒊 + ഥ𝑯𝒊)



𝑸

𝑲,𝑽

Decoder

encoder-decoder attention layer

Masked Multi-head
Only attend to the words that have been translated.



Scores

𝑺𝒄𝒐𝒓𝒆𝒔 𝑿𝟎 = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎(𝑿𝑳)𝑾𝑽𝒐𝒄𝒂𝒃

During training, these scores are the inputs of a cross entropy
loss function. During generation, the scores corresponding
to the final token are normalized with a softmax,
yielding a distribution for sampling a new token.



TRANSFORMER MODELS: AN INTRODUCTION AND CATALOG

Xavier Amatriain 
Los Gatos, CA 95032 
xavier@amatriain.net

arXiv:2302.07730



Cover (One Topic at One Lecture) 
• ProGen: Language Modeling for Protein Generation

• ProGen Generate functional protein sequences

• ESM2: Language  Model  generalize beyond natural proteins

• Language Models and Diffusion Process

• Language Model for Antibody Design

• MULTI-LEVEL PROTEIN STRUCTURE PRE-TRAINING WITH PROMPT LEARNING

• DNA Language Model

• Embeddings from language models predict conservation and variant effects

• Protein Language Models for Protein Docking

• Table Data, Language and Omics Data Embedding

• A new path to uncovering Disease Mechanism using language models,

Causal Inference and Omics

• A New Paradigm for Drug Discovery and Drug Repurposing
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