
Manifold Learning and Artificial Intelligence

Lecture 3 

Generative AI
Meeting ID: 933 1613 9423

Passcode: 416262

https://uwmadison.zoom.us/j/93316139423?pwd=Q0NVWFYvRFg5RmxCNkwxMmYrbW41dz09

momiao. xiong@gmail.com

shihcheng.guo@gmail.com

Github Address: https://ai2healthcare.github.io/



Generative AI
Introduction 3

Early Stage:

Variational Autoencoder (VAE)

Generative Adversarial Neural Network (GAN)

Normalizing Flow

Current Stage

Score Matching

Denoise Diffusion Probability Models

Stochastic Differential Equations (SDE)



Sure enough, as the models get bigger 
and bigger, they begin to deliver human-
level, and then superhuman results.

The goal of generative modeling is to use the 
dataset to learn a model for generating
new samples from 𝑷𝒅𝒂𝒕𝒂(𝒙)

https://www.sequoiacap.com/article/generative-ai-a-creative-new-world/



SEQUOIA



SEQUOIA



1.4. Generative Models 

1.4.1. Introduction
• Analytic AI: analyze a set of data and 

find patterns in it. 

• Generative AI: Use existing content like

text, audio files, or images to create 

new plausible content. 

• The MIT Technology review described

generative AI as one of the most 

promising advances in the world of AI 

in the past decade

IBM developer blog. What is generative AI and how much power does it have

• Generative AI is well on the way to becoming 
not just faster and cheaper, but better in 
some cases than what humans create by hand 
(SEQUOIA)



Deep Generative Models

This course introduces how to develop deep generative 
models (DGMs) by integrating probabilistic graphical models 
and deep learning to generate realistic data including images, 
texts, graphs, etc. Course contents include 1) basics of 
probabilistic graphical models, including Bayesian network and 
Markov random field; 2) posterior  inference methods, 
including message passing, variational inference, and Markov 
chain Monte Carlo sampling; 3) parameter learning and 
structure learning methods, including maximum likelihood 
estimation, expectation–maximization algorithm, and 
graphical LASSO; 4) deep generative models (DGMs), including 
variational auto-encoder, generative adversarial networks, 
normalizing flows, and  evaluation of DGMs; 5) applications of 
DGMs in  image generation, text generation, and graph 
generation.

https://www.csail.mit.edu/

MIT AI and ML



1.4.2. Stages of Generative Models

• Basic Ideas:

Data 
Estimation of Data 

Distribution log 𝑃𝑑𝑎𝑡𝑎(𝑥)

Sampling from Estimated 
Data Distribution

• Early Stage

VAE

GAN



Normalizing Flows

Rezende 2016, Variational inference with normalizing flows.

Kingma and Welling, 2014; Auto-Encoding Variational Bayes

Goodfellow et al. 2014; Generative Adversarial Nets

Xiong MM (2022) Artificial Intelligence and Causal Inference. CRC Press



1.4.2. Stages of Generative Models

• Current Stage

Score Matching

Denoise Diffusion Probability Models

Stochastic Differential Equations



1.4.3. Score Match

1.4.3.1. Optimal Score
• Let 𝐿 𝑥, 𝜃 be a likelihood function. The score function is defined as

𝑈 𝜃 =
𝜕 log 𝐿(𝑥,𝜃)

𝜕𝜃
.

Define Scores in Diffusion Models:

• Consider i.i.d. samples 𝑥1, … , 𝑥𝑛 , 𝑥𝑖 ∈ 𝑅𝑑.

• Unnormalized distribution for model: ෨𝑃𝑚(𝑥, 𝜃)

• Normalized distribution for model: 𝑃𝑚 𝑥, 𝜃 , 𝑃𝑚 𝑥, 𝜃 =
෨𝑃𝑚(𝑥,𝜃)

𝑍(𝜃)
. Z θ = ׬ ෨𝑃𝑚 𝑥, 𝜃 𝑑𝑥

• Score for Data: 𝑺𝒅𝒂𝒕𝒂 𝒙 = 𝛁𝒙 𝐥𝐨𝐠𝑷𝒅𝒂𝒕𝒂(𝒙)

• Score for Model:  𝑺𝒎 𝒙, 𝜽 = 𝛁𝒙 𝐥𝐨𝐠𝑷𝒎 𝒙, 𝜽 = 𝛁𝒙 log ෩𝑷𝑚(𝑥, 𝜃)

Song et al. 2019, Sliced Score Matching: A Scalable Approach to Density and Score Estimation





1.4.3.2. Fisher Divergence and Score Matching

• Fisher Divergence between 𝑷𝒅𝒂𝒕𝒂 𝒙 𝒂𝒏𝒅 𝑷𝒎(𝒙, 𝜽) :

𝐿 𝜃 =
1

2
𝐸𝑃𝑑𝑎𝑡𝑎 (𝑥)

𝑆𝑚 𝑥, 𝜃 − 𝑆𝑑𝑎𝑡𝑎(𝑥) 2

2

Since we only have samples and do not have access to the score 

function of the data 𝑺𝒅𝒂𝒕𝒂(𝒙), we cannot compute the Fisher divergence.

• Fisher divergence is equal to zero, if and only if two densities are equal.

• However, the Fisher divergence can be transformed to 

𝐽 𝜃 = 𝐸𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑇𝑟 ∇𝑥𝑆𝑚 𝑥, 𝜃 +
1

2
𝑆𝑚(𝑥, 𝜃) 2

2
, Tr denotes trace of matrix.,

∇𝑥𝑆𝑚 𝑥, 𝜃 =

𝜕2 𝑃𝑚(𝑥, 𝜃)

𝜕𝑥1
2 ⋯

𝜕2𝑃𝑚 (𝑥, 𝜃)

𝜕𝑥1𝜕𝑥𝑁
⋮ ⋮ ⋮

𝜕2𝑃𝑚 (𝑥, 𝜃)

𝜕𝑥𝑁𝜕𝑥1
⋯

𝜕2𝑃𝑚 (𝑥, 𝜃)

𝜕𝑥𝑁
2

Is the Hessian of the log-density 
function of model.



Sampling Formula for Computing Fisher Divergence:

• 𝐽 𝜃, 𝑥1, … , 𝑥𝑁 =
1

𝑁
σ𝑖=1
𝑁 𝑇𝑟 ∇𝑥𝑆𝑚 𝑥𝑖 , 𝜃 +

1

2
𝑆𝑚(𝑥𝑖 , 𝜃) 2

2

Proof

L 𝜃 =
1

2
𝐸𝑃𝑑𝑎𝑡𝑎 (𝑥)

𝑆𝑚 𝑥, 𝜃 − 𝑆𝑑𝑎𝑡𝑎(𝑥) 2

2

=
1

2
𝐸𝑃𝑑𝑎𝑡𝑎 (𝑥)

𝑆𝑑𝑎𝑡𝑎
𝑇 𝑥 𝑆𝑑𝑎𝑡𝑎 𝑥 + 𝑆𝑚

𝑇 𝑥, 𝜃 𝑆𝑚 𝑥, 𝜃 − 2𝑺𝒎
𝑻 𝒙, 𝜽 𝑺𝒅𝒂𝒕𝒂 𝒙

Since the first term does not depend on the parameter 𝜃, we only need to 

consider the second and third terms in the above equation.  

1

2
𝐸𝑃𝑑𝑎𝑡𝑎 (𝑥)

[𝑺𝒎
𝑻 𝒙, 𝜽 𝑺𝒎 𝒙, 𝜽 ] =

𝟏

𝟐
෍

𝒊=𝟏

𝒏

𝐸𝑃𝑑𝑎𝑡𝑎 (𝑥)
[ 𝑺𝒎(𝒙𝒊, 𝜽

𝟐]

1

2
𝐸𝑃𝑑𝑎𝑡𝑎 (𝑥)

[𝟐𝑺𝒎
𝑻 𝒙, 𝜽 𝑺𝒅𝒂𝒕𝒂 𝒙 ] =෍

𝒊=𝟏

𝒏

න𝑷𝒅𝒂𝒕𝒂 𝒙 𝑺𝒎 (𝒙𝒊, 𝜽)
𝝏 log 𝑃𝑑𝑎𝑡𝑎(𝑥𝑖)

𝝏𝒙𝒊

=෍
𝑖=1

𝑛

න𝑆𝑚(𝑥𝑖 , 𝜃)
𝜕𝑃𝑑𝑎𝑡𝑎(𝑥𝑖)

𝜕𝑥𝑖
𝑑𝑥𝑖



=෍
𝑖=1

𝑛

𝑃𝑑𝑎𝑡𝑎 𝑥𝑖 𝑆𝑚 𝑥𝑖 , 𝜃 |−∞
∞ −න𝑃𝑑𝑎𝑡𝑎(𝑥𝑖)

𝜕𝑆𝑚(𝑥𝑖 , 𝜃)

𝜕𝑥𝑖
𝑑𝑥𝑖

= −෍
𝑖=1

𝑛

𝐸𝑃𝑑𝑎𝑡𝑎(𝑥𝑖)
𝜕2 log 𝑃𝑚(𝑥𝑖 , 𝜃)

𝜕𝑥𝑖
2

= −𝐸𝑃𝑑𝑎𝑡𝑎(𝑥) 𝑇𝑟 ∇𝑥𝑆𝑚 𝑥, 𝜃 (𝜵𝒙𝑺𝒎 𝒙, 𝜽 =
𝝏𝟐𝑷𝒎(𝒙,𝜽)

𝝏𝒙𝝏𝒙𝑻
)

which implies 

𝑱 𝜽 = 𝑬𝒑𝒅𝒂𝒕𝒂(𝒙) 𝑻𝒓 𝜵𝒙𝑺𝒎 𝒙, 𝜽 +
𝟏

𝟐
𝑺𝒎(𝒙, 𝜽) 𝟐

𝟐

= 𝟎

𝑇𝑟 𝐴 = 𝑎11 +⋯+ 𝑎𝑘𝑘



1.4.3.3. Score Estimation for Implicit Distribution
• Motivation

Previous score matching is used for parameter estimation in unnormalized 

models. It  can also be used to estimate scores of implicit distributions. They  

have a tractable sampling process but without a tractable density. For example, 

distribution 𝑞𝜃(𝑥) of generated samples from the generator of a GAN is an 

implicit distribution.

Sometimes, we need to estimate the score function 𝑆𝑞 𝑥 = ∇𝑥 log 𝑞𝜃 𝑥 . For 

example, optimizing the entropy 𝐻 𝑞𝜃 𝑥 , we need to calculate score 𝑆𝑞 𝑥 .

Let 𝑥~𝑞𝜃 𝑥 , x = 𝑔𝜃 𝜀 , 𝜀~𝑁 0, 𝐼 , 𝑔𝜃 is a deterministic function. Then, 

∇𝜃𝐻 𝑞𝜃 = −∇𝜃 𝐸𝑞𝜃 𝑥 log 𝑞𝜃 𝑥 = −∇𝜃 𝐸𝑝(𝜀) log 𝑞𝜃(𝑔𝜃 𝜀 )

𝑞𝜃 𝑥 = 𝑃𝜃(𝜀) ∇𝜀(𝑔𝜃 𝜀 )
−1

= −𝐸𝑝(𝜀) ቚ𝜵𝒙 𝐥𝐨𝐠 𝒒𝜽 𝒙
𝒙=𝒈𝜽 𝜺

∇𝜃𝑔𝜃(𝜀)





1.4.3.4. Score Estimation 

• 𝜵𝒙 𝐥𝐨𝐠 𝒒𝜽 𝒙 is intractable, but can be approximated by score function. 

• Score function:𝒉 𝒙, 𝜽 : a neural network

𝒙 𝒉(𝒙, 𝜽)

• 𝐿 𝜃, 𝑃𝑑𝑎𝑡𝑎 𝑥 =
1

2
𝐸𝑃𝑑𝑎𝑡𝑎(𝑥) ℎ 𝑥, 𝜃 − 𝜵𝒙 𝐥𝐨𝐠 𝒒𝜽 𝒙

2

2

𝑳 𝜽, 𝑷𝒅𝒂𝒕𝒂 𝒙 = 𝟎 ↔ 𝒉 𝒙, 𝜽 = 𝜵𝒙 𝐥𝐨𝐠 𝒒𝜽 𝒙



1.4.3.5. Sliced Score Matching

• Motivation

To avoid difficulty in computing the trace of the Hessian of a log-density 

function ∇𝑥
2 log ෨𝑃𝑚,  Consider projecting score functions 𝑆𝑑 𝑥 and 𝑆𝑚 𝑥, 𝜃

On to some random direction 𝑣 and compare their average difference 

along that random direction

• Objective Function for Sliced Score Matching

𝐿 𝜃, 𝑃𝑣 =
1

2
𝐸𝑃𝑣𝐸𝑃𝑑 𝑉𝑇𝑆𝑚 𝑥, 𝜃 − 𝑉𝑇𝑆𝑑(𝑥)

2

where 𝑉~𝑃𝑣 and 𝑥~𝑃𝑑 are independent, 𝐸𝑃𝑣 𝑉𝑉
𝑇 is positive definite and

𝐸𝑃𝑣 𝑉 2
2 < ∞ is finite.

• Reduction
To eliminate the dependence of 𝐿(𝜃, 𝑃𝑣) on 𝑆𝑑 , 𝐿 𝜃, 𝑃𝑣 can be reduced to 

𝐿 𝜃, 𝑃𝑣 = 𝐽 𝜃, 𝑃𝑣 + 𝐶

where 𝑱 𝜽, 𝑷𝒗 = 𝑬𝑷𝒗𝑬𝑷𝒅[𝑽
𝑻𝜵𝒙𝑺𝒎 𝒙, 𝜽 𝑽 +

𝟏

𝟐
𝑽𝑻𝑺𝒎 𝒙, 𝜽

𝟐
], 𝐶 is a constant. 

(4.1)

(4.2)



Proof

Let 𝐶 =
1

2
𝐸𝑃𝑉𝐸𝑃𝑑 𝑉𝑇𝑆𝑑(𝑥)

2

Note

−𝐸𝑃𝑉𝐸𝑃𝑑 𝑉𝑇𝑆𝑚 𝜃, 𝑥 𝑆𝑑
𝑇 𝑥 𝑉 = −𝐸𝑃𝑉 න𝑃𝑑(𝑥)𝑉

𝑇𝑆𝑚 𝜃, 𝑥
𝜕 log 𝑃𝑑(𝑥)

𝜕𝑥

𝑇

𝑉𝑑𝑥

= 𝐸𝑃𝑉 − ඏ𝑉𝑇𝑆𝑚 𝜃, 𝑥 𝑃𝑑
𝑇 𝑥 𝑉

−∞

∞
+ 𝑉𝑇∇𝑥𝑆𝑚(𝑥)𝑃𝑑׬

𝑇 𝑥 𝑉𝑑𝑥 (part by integration)

= 𝐸𝑃𝑉𝐸𝑃𝑑 𝑉𝑇∇𝑥𝑆𝑚 𝑥 𝑉 (4.4)

(4.3)

Substituting equations (4.3) and (4.4) into equatiom (4.1) yields equation (4.2).

= 𝟎



,1.4.3.6. Sampling Formula of Sliced Score

Let 𝑋1
𝑁 = 𝑥1, … , 𝑥𝑁 and 𝑉11

𝑁𝑀 = 𝑉𝑖𝑗 1≤𝑖≤𝑁,1≤𝑗≤𝑀

Define Sampling Formula of 𝑱 𝜽, 𝑷𝒗 : 

෠𝑱 𝜽, 𝑿𝟏
𝑵𝑵, 𝑽𝟏𝟏

𝑵𝑴 =
𝟏

𝑵

𝟏

𝑴
෍

𝒊−𝟏

𝑵

෍
𝒋=𝟏

𝑴

𝑽𝒊𝒋
𝑻𝜵𝒙𝑺𝒎 𝒙𝒊, 𝜽 𝑽𝒊𝒋 +

𝟏

𝟐
𝑽𝒋
𝑻𝑺𝒎(𝒙𝒊, 𝜽)

𝟐

(4.5)



1.4.3.7. Estimator with Reduced Variance

Assume that 𝑽~𝑵 𝟎, 𝑰 . Then,  

𝐸𝑃𝑉 𝑉𝑇𝑆𝑚(𝑥, 𝜃)
2
= 𝐸𝑃𝑉 𝑇𝑟 𝑉𝑇𝑆𝑚(𝑥, 𝜃)

2

= 𝐸𝑃𝑉 𝑇𝑟 𝑉𝑇𝑆𝑚(𝑥, 𝜃 𝑆𝑚(𝑥, 𝜃)
𝑇𝑉

= 𝐸𝑃𝑉 𝑇𝑟(𝑆𝑚(𝑥, 𝜃)𝑆𝑚 𝑥, 𝜃 𝑇𝑉𝑉𝑇)

= 𝑇𝑟(𝑆𝑚(𝑥, 𝜃)𝑆𝑚 𝑥, 𝜃 𝑇 𝐸𝑃𝑉 𝑉𝑉𝑇 )

𝐸𝑃𝑉 𝑉𝑉𝑇 = 𝐼

= 𝑇𝑟(𝑆𝑚(𝑥, 𝜃)𝑆𝑚 𝑥, 𝜃 𝑇) = 𝑆𝑚 𝑥, 𝜃 2
2

(4.6)

Substituting equation (4.6) into equation (4.2) yields

𝑱𝒗𝒓 𝜽,𝑷𝒗 = 𝑬𝑷𝒗𝑬𝑷𝒅 𝑽𝑻𝜵𝒙𝑺𝒎 𝒙, 𝜽 𝑽 +
𝟏

𝟐
𝑺𝒎 𝒙, 𝜽 𝟐

𝟐 (4.7)



෠𝑱𝒗𝒓 𝜽,𝑿𝟏
𝑵𝑵, 𝑽𝟏𝟏

𝑵𝑴 =
𝟏

𝑵

𝟏

𝑴
෍

𝒊−𝟏

𝑵

෍
𝒋=𝟏

𝑴

𝑽𝒊𝒋
𝑻𝜵𝒙𝑺𝒎 𝒙𝒊, 𝜽 𝑽𝒊𝒋 +

𝟏

𝟐
𝑺𝒎 𝒙𝒊, 𝜽 𝟐

𝟐
(4.8)

Song et al. 2019, Sliced Score Matching: A Scalable Approach to Density and Score Estimation



1.4.3.8. Algorithm for Sliced Score Matching 

Step 1: Input ෩𝑷𝒎 . ; 𝜽 , 𝒙, 𝑽

Step 2:  𝑺𝒎(𝒙; 𝜽) ← 𝛁𝒙 log ෩𝑷𝑚(𝑥, 𝜃)

Step 3:  𝑽𝑻𝛁𝒙𝑺𝒎(𝒙, 𝜽) ← 𝛁𝒙 𝑽𝑻𝑺𝒎(𝒙, 𝜽)

Step 4: 𝐉 ←
𝟏

𝟐
𝑽𝑻𝑺𝒎(𝒙, 𝜽)

𝟐
(or 

𝟏

𝟐
𝑺𝒎 𝒙, 𝜽 𝟐

𝟐)

Step 5: 𝑱 ← 𝑱 + 𝑽𝑻𝛁𝒙𝑺𝒎 𝒙, 𝜽 𝐕

Step 6: Output 𝑱



1.4.3.9. Consistency of Estimator

• Data Distribution 𝑷𝒅(𝒙)

• Model Distribution 𝑷𝒎(𝒙, 𝜽)

𝑷𝒎 𝒙, 𝜽∗ = 𝑷𝒅(𝒙)

• Let 

෡𝜽𝑵,𝑴 = argmin
𝜃

መ𝐽(𝜃, 𝑋1
𝑁, 𝑉11

𝑁)

• Then, for a fixed 𝑀, under some regular conditions 

෡𝜽𝑵,𝑴՜
𝒑
𝜽∗, 𝑁 ՜ ∞

𝑱 𝜽, 𝑷𝑽 = 𝟎֞ 𝜽 = 𝜽∗

෡𝜽𝑵.𝑴 ՜ 𝜽



1.4.3.10. Asymptotic Normality

Under some assumptions,  we have 

𝑵(෡𝜽𝑵,𝒎 − 𝜽∗)՜
𝒅
𝐍(𝟎, 𝜮)

where

Σ = ∇𝜃
2𝐽(𝜃∗

−1
σ1≤𝑖,𝑗≤𝐷𝑉𝑖𝑗 ∇𝜃

2𝐽(𝜃∗
−1





1.4.3.11. Challenges of score-based generative modeling

• Data are located in low dimensional manifold, not in the entire database, 

including high dimensional ambient space. 

Son and Ermon, 2020. Generative Modeling by Estimating Gradients of the Data Distribution 

• Since the score ∇𝑥 log 𝑃𝑑𝑎𝑡𝑎(𝑥) may be taken in the ambient space, it is 

undefined  when 𝑥 is only located in a low dimensional manifold.

• Score matching algorithm provides a consistent score estimator only 

when the support of the data distribution is in the entire space. 

• We then produce samples using Langevin dynamics, which approximately works 

by gradually moving a random initial sample to high density regions along the 

(estimated) vector field of scores





𝑷𝒅𝒂𝒕𝒂 𝒙 =
𝟏

𝟓
𝑵 −𝟓,−𝟓 , 𝑰 +

𝟒

𝟓
𝑵( 𝟓, 𝟓 , 𝑰)





1.4.3.12. Denoising score matching

Step 1:

To avoid computing cost of 𝑻𝒓 𝜵𝒙𝑺𝒎 𝒙, 𝜽 , we first perturb the data 𝑥 with 

a pre-specified noise distribution 𝑞𝜎 ෤𝑥 𝑥 .

Step 2: 

Then, employ score matching to estimate the score of the perturbed data distribution

𝑞𝜎 ෤𝑥 = න𝑞𝜎 ෤𝑥 𝑥 𝑃𝑑𝑎𝑡𝑎 𝑥 𝑑𝑥
Step 3: 

The equivalent objective is given by
1

2
𝐸𝑞𝜎( ෤𝑥|𝑥)𝑃𝑑𝑎𝑡𝑎(𝑥) 𝑆𝜃 ෤𝑥 − ∇ ෤𝑥 log 𝑞𝜎( ෤𝑥|𝑥) 2

2

Note that ∇ ෤𝑥 log 𝑞 ෤𝑥 = ∇ ෤𝑥 log 𝑞𝜎 ෤𝑥 𝑥 + log𝑃𝑑𝑎𝑡𝑎 𝑥 = ∇ ෤𝑥 log 𝑞𝜎 ෤𝑥 𝑥



Step 4:

The optimal score network minimizes the above objective functions satisfies

𝑆𝜃∗ 𝑥 = ∇𝑥 log 𝑞𝜎(𝑥) ≈ ∇𝑥 log 𝑃𝑑𝑎𝑡𝑎(𝑥)

when the noise is small such that 

𝑞𝜎(𝑥) ≈ 𝑃𝑑𝑎𝑡𝑎(𝑥)



Built upon this intuition, we propose to improve score-based generative 

modeling by

• 1) perturbing the data using various levels of noise; and 

• 2) simultaneously estimating scores corresponding to all noise levels by 

training a single conditional score network.



Ronneberger et al. 2015. U-Net Convolutional Networks for Biomedical Image Segmentation

1.4.3.13. Generative Model by Score Matching



• Noise Conditional Score Network 𝑺𝜽(𝒙, 𝝈)

Define

𝜎𝑖 𝑖=1
𝐿 ,

𝜎1
𝜎2

= ⋯ =
𝜎𝐿−1
𝜎𝐿

> 1

𝑞𝜎(෪𝑥) = න𝑃𝑑𝑎𝑡𝑎 𝑥 𝑁(෤𝑥 𝑥, 𝜎2𝐼 𝑑𝑥

NN
𝝈

𝒙
𝑺𝜽(𝒙, 𝝈)

• Objective Function ∇ ෤𝑥 log 𝑞𝜎 ෤𝑥 𝑥 = −
෤𝑥 − 𝑥

𝜎2

𝑙 𝜃, 𝜎 =
1

2
𝐸𝑃𝑑𝑎𝑡𝑎(𝑥)𝐸 ෤𝑥~𝑁(𝑥,𝜎2) 𝑺𝜽 ෤𝑥, 𝝈 +

෤𝑥 − 𝑥

𝜎2
2

2

𝑙 𝜃, 𝜎𝑖 𝑖=1
𝐿 =

1

𝐿
෍

𝑖=1

𝐿

𝜆 𝜎𝑖 𝑙(𝜃, 𝜎𝑖)

𝑺𝜽 ෤𝑥, 𝝈 = 𝛁෥𝒙 log 𝑞𝜎 𝑥 , 𝜆 𝜎𝑖 = 𝝈𝒊
𝟐



1.4.3.14. Stochastic Gradient and Langevin MCMC

Step 1: Solve

𝜃∗ = argmin
𝜃

෍
𝑖=1

𝑛

𝜎𝑖
2𝐸𝑃𝑑𝑎𝑡𝑎(𝑥)𝐸𝑃𝜎𝑖

𝑆𝜃 ෤𝑥, 𝜎𝑖 − ∇ ෤𝑥 log 𝑃𝜎𝑖( ෤𝑥|𝑥) 2

2

Step 2:

Similar to stochastic gradient algorithm, we use Langevin MCMC to get a 
sample for each 𝑃𝜎𝑖(x) sequentially

= 𝑥𝑖
𝑚−1 + 𝜀𝑖𝑆𝜃∗ 𝑥𝑖

𝑚−1, 𝜎𝑖 + 2𝜀𝑖𝑧𝑖
𝑚, 𝑚 = 1,… ,𝑀, 𝜀𝑖 > 0, 𝑧𝑖

𝑚 is standard normal.

𝑥𝑖
𝑚

𝑥𝑖
𝑚 = 𝑥𝑖

𝑚−1 + 𝜀𝑖∇𝑥 log 𝑃𝜎𝑖 𝑥𝑖
𝑚−1 + 2𝜀𝑖𝑧𝑖

𝑚

Step 3: Repeat for 𝑖 = 𝑁,𝑁 − 1,… , 1, with 𝑥𝑁
0~𝑁 𝑥 0, 𝜎𝑚𝑎𝑥

2 𝐼 , 𝑥𝑖
0 = 𝑥𝑖+1

𝑀 for 𝑖 < 𝑁

As  𝑀 ՜ ∞ and 𝜀𝑖 > 0, for all 𝑖, 𝑥1
𝑀 becomes  an exact sample from 𝑃𝜎𝑚𝑖𝑛

≈ 𝑃𝑑𝑎𝑡𝑎 𝑥 .

(Algorithm 1)



1.4.3.15. Stochastic Gradient and Langevin MCMC

(Algorithm 2)
• Input   𝜎𝑖 𝑖=1

𝐿 , 𝜀, 𝑇

• Step 1 Initialize ෤𝑥0

• Step 2 For 𝑖 ← 1 𝑡𝑜 𝐿 do 

𝛼𝑖 ← 𝜀
𝜎𝑖
2

𝜎𝐿
2

• Step 3 for 𝑡 ← 1 𝑡𝑜 𝑇 do
𝐷𝑟𝑎𝑤 𝑧𝑡~𝑁 0, 𝐼

෤𝑥𝑡 ← ෤𝑥𝑡−1 +
𝛼𝑖

2
𝑆𝜃 ෤𝑥𝑡−1, 𝜎𝑖 + 𝛼𝑖𝑧𝑡

end for

෤𝑥0 ← ෤𝑥𝑇
end for

• Step 4 Return ෤𝑥𝑇










