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DIFFDOCK: DIFFUSION STEPS, TWISTS, AND TURNS 
FOR MOLECULAR DOCKING

Gabriele Corso et al. 2023, MIT

all code is available at https://github.com/gcorso/DiffDock.

Riemannian Score-Based Generative Modelling

Valentin De Bortoli et al. 2022



• Molecular docking:

binding structure of a small molecule ligand to a protein

We instead frame molecular docking as a generative modeling problem and 

develop DIFFDOCK, a diffusion generative model over the non-Euclidean 

manifold of ligand poses.

The biological functions of proteins can be modulated by small molecule 

ligands (such as drugs) binding to them

• Traditional approaches for docking

scoring-functions that estimate the correctness of a proposed structure or pose,

optimization algorithm that searches for the global maximum of the scoring function

• frame molecular docking as a generative modeling problem—

given a ligand and target protein structure, we learn a distribution 

over ligand poses

Concepts 



DIFFDOCK, a diffusion generative model (DGM) over the 
space of ligand poses for molecular docking.

Figure 1: Overview of DIFFDOCK. Left: The model takes as input the separate ligand and protein
structures. Center: Randomly sampled initial poses are denoised via a reverse diffusion over translational,
rotational, and torsional degrees of freedom. Right:. The sampled poses are ranked by the
confidence model to produce a final prediction and confidence score.



Diffusion generative models (DGMs) In Euclidean Space.

• The initial distribution 𝑷𝟎(𝒙)

• Forward diffusion process:

𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

• Reverse diffusion process:

𝑑𝑥 = [𝑓 𝑥, 𝑡 − 𝑔2(𝑡)∇𝑥 log 𝑃𝑡(𝑥)]𝑑𝑡 + 𝑔(𝑡)𝑑𝑤

• Assumption:

𝑓 𝑥, 𝑡 = 0



DOCKING AS GENERATIVE MODELING

• Molecular docking objective

Concretely, a prediction is considered acceptable when the distance between 
the structures (measured in terms of ligand RMSD) is below some small 
tolerance on the order of the length scale of atomic interactions (a few A° ). 
Consequently, the standard evaluation metric used in the field has been the 
percentage of predictions with a ligand RMSD (to the crystal ligand
pose) below some value .

Thus, we view molecular docking as the problem of learning a 

distribution over ligand poses conditioned on the protein structure and 

develop a diffusion generative model over this space



• Confidence model

With a trained diffusion model, it is possible to sample an arbitrary number of

ligand poses from the posterior distribution according to the model. However,

researchers are often interested in seeing only one or a small number of 

predicted poses and an associated confidence measure for downstream 

analysis. Thus, we train a confidence model over the poses sampled by

the diffusion model and rank them based on its confidence that they are within 

the error tolerance.

The top-ranked ligand pose and the associated confidence are then taken 

as DIFFDOCK’s top-1 prediction and confidence score.



Problem with regression-based methods.

Figure 2: “DIFFDOCK top-1” refers to the sample with the highest confidence. “DIFFDOCK samples”
to the other diffusion model samples. Left: Visual diagram of the advantage of generative

models over regression models. Given uncertainty in the correct pose (represented by the orange
distribution), regression models tend to predict the mean of the distribution, which may lie in a

region of low density. Center: when there is a global symmetry in the protein (aleatoric uncertainty),
EquiBind places the molecule in the center while DIFFDOCK is able to sample all the true
poses. Right: even in the absence of strong aleatoric uncertainty, the epistemic uncertainty causes
EquiBind’s prediction to have steric clashes and TANKBind’s to have many self-intersections.



METHOD
• Overview

A ligand pose 𝑥 is an assignment of atomic positions in 𝑅3, 𝑥 ∈ 𝑅3𝑛, 𝑛. ∶ number of 

atoms.



A ligand pose 𝑥 is an assignment of atomic positions in 𝑅3, 𝑥 ∈ 𝑅3𝑛, 𝑛. ∶ number of 

atoms. bond lengths, angles, and small rings in the ligand are essentially rigid, 

such that the ligand flexibility lies almost entirely in the torsion angles at rotatable 
bonds. Traditional docking methods, as well as most ML ones, take as input a seed 
conformation 𝑐 ∈ 𝑅3𝑛 of the ligand in solation and change only the relative position and 
the torsion degrees of freedom in the final bound conformation. 



The space of ligand poses consistent with c is, therefore, an (m + 6)-

dimensional submanifold 𝑀𝑐 ⊂ 𝑅3𝑛, where m is the number of rotatable 

bonds, and the six additional degrees of freedom come from rototranslations 

relative to the fixed protein. We follow this paradigm of taking as input a seed 

conformation 𝑐, and formulate molecular docking as learning a probability

distribution 𝑃𝑐(𝑥|𝑦) over the manifold 𝑀𝑐, conditioned on a protein structure 𝑦.



• Forward SDE

𝑑𝑥 =
𝑑𝜎2(𝑡)

𝑑𝑡
𝑑𝑊, 𝜎2 = 𝜎𝑡𝑟

2 , 𝜎𝑟𝑜𝑡
2 , 𝜎𝑡𝑜𝑟
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• Any ligand pose consistent with a seed conformation can be reached by a 
combination of (1) ligand translations, (2) ligand rotations, and (3) changes 
to torsion angles.

This can be viewed as an informal definition of the manifold 𝑴𝒄

MODEL ARCHITECTURE

We construct the score model s(x; y; t) and the confidence 

model d(x; y) to take as input the current ligand pose x and 

protein structure y in 3D space.

The output of the confidence model is a single scalar,  as 

ligand pose distributions, are defined relative to the protein 

structure, which can have arbitrary location  and orientation. 

On the other hand, the output of the score model must be in 

the tangent space.



Ligand self-intersections. TANKBind (blue), EquiBind (cyan), DIFFDOCK (red), and
crystal structure (green). Due to the averaging phenomenon that occurs when epistemic 
uncertainty is present, the regression-based deep learning models tend to produce ligands with 
atoms that are close together, leading to self-intersections. DIFFDOCK, as a generative model, 
does not suffer from this averaging phenomenon, and we never found a self-intersection in any 
of the investigated results of DIFFDOCK.



Chemically plausible local structures. TANKBind (blue), EquiBind (cyan), and DIFFDOCK
(red) structures for complex 6g2f. EquiBind (without their correction step) produces very
unrealistic local structures and TANKBind, e.g., produces non-planar aromatic rings. 
DIFFDOCK’s local structures are the realistic local structures of RDKit



Randomly picked examples. The predictions of 

TANKBind (blue), EquiBind (cyan),

GNINA (magenta), DIFFDOCK (red), and crystal 

structure (green). Shown are the predictions once

with the protein and without it below. The 

complexes were chosen with a random number 

generator from the test set. TANKBind often 

produces self intersections (examples at the top-

right; middle middle;

middle-right; bottom-right). DIFFDOCK and GNINA 

sometimes almost perfectly predict

the bound structure (e.g., top-middle). 



Symmetric complexes and multiple modes. 

EquiBind (cyan), DIFFDOCK highest

confidence sample (red), all other 

DIFFDOCK samples (orange), and the 

crystal structure (green).

We see that, since it is a generative model, 

DIFFDOCK is able to produce multiple 

correct modes and to sample around them. 

Meanwhile, as a regression-based model, 

EquiBind is only able to predict a structure 

at the mean of the modes. The complexes 

are unseen during training. The PDB IDs in

reading order: 6agt, 6gdy, 6ckl, 6dz3.



Reverse Diffusion. Reverse diffusion of a randomly picked complex from the test set.
Shown are DIFFDOCK highest confidence sample (red), all other DIFFDOCK samples (orange), 
and the crystal structure (green). Shown are the 20 steps of the reverse diffusion process (in 
reading order) of DIFFDOCK for the complex 6oxx. Videos of the reverse diffusion are available 
at https: //github.com/gcorso/DiffDock/visualizations/README.md.
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