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14.1. Outlines
1. Methods for analysis of mutation effect (using sequences only)

• Traditional, Embedding-Free method

• AI-based methods (Embedding-based):

(a) Natural language model, Transformer 

(b) Variational autoencoder 

• Genotype Language Model, Fundamental Model for Genetics

Token of genotypes

Architecture of Genotype Language Model

Loss Function and Training

• Score Function

Fitness

Semantic Score

2. A General Framework for Hypothesis Testing in Fundamental Models

• Null Hypothesis

• Test Statistics

• Distribution of Test Statistics

• Nonlinear Test
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Goal of Analysis

Intuitively, our goal is to identify mutations that induce high 

semantic change (e.g., a large impact on biological 

function) while being grammatically acceptable (e.g, 

biologically viable)



14.2. Mutability and Mutation Effect

• Mutations: 
point mutations, insertion/deletions, chromosome rearrangement

• Mutation Phenotypes: consequences of the mutation, 

functions .

• Methods for mutation effect analysis:

Embedding Free, Multiple Sequence Alignment (MSA)

Embedding-based
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Schema of multiple sequence alignment.

Homo sapiens

Pan troglodytes

Macaca mulutta

Canis lupus familiaris

Bos Taurus

Mus musculus

Rattus norvegicus

Gallus gallus

Danio rerio

𝒂𝒊 𝒂𝒋

𝒉𝒊(𝒂𝒊)
𝑰𝒊𝒋(𝒂𝒊, 𝒂𝒋)

The Goal of MSA is to align the sequences which reflect evolutionary, 

functional, or structural relationship

14.3. Embedding Free Methods (MSA)



14.3. 1.  Mutation Effect Model

• Independence
Assume an aminol acid (allele) sequence of length L: 

𝒂 = 𝒂𝟏… 𝒂𝑳.
Assume independence of 𝒂𝒊 : The probability of a under 

independence model is
෡𝑷𝑰𝑵𝑫 𝒂𝟏… 𝒂𝑳 = ς𝒊=𝟏

𝑳 𝒇𝒊(𝒂𝒊),
where 𝒇𝒊(𝒂𝒊) is the empirical frequency of aminal acid (allele) 

𝒂𝒊 𝐢𝐧 𝐭𝐡𝐞 𝐌𝐒𝐀.
The effect of an amino acid (Genotype) mutation 𝒂𝒊 → 𝒃 can 

be computed as

∆𝑬𝑰𝑵𝑫 𝒊, 𝒃
= 𝐥𝐨𝐠𝑷𝑰𝑵𝑫 𝒂𝟏, …𝒂𝒊, … , 𝒂𝑳 − 𝐥𝐨𝐠𝑷𝑰𝑵𝑫(𝒂𝟏, … , 𝒃, … , 𝒂𝑳)

= 𝐥𝐨𝐠 𝒇𝒊 𝒂𝒊 − 𝐥𝐨𝐠𝒇𝒊(𝒃) .



• Epistatic Model: two-site coupling terms

𝑷𝑫𝑪𝑨(𝒂𝟏, … , 𝒂𝑳) =
𝟏

𝒁
𝒆𝒙𝒑 ෍

𝒊=𝟏

𝑳

𝒉 𝒂𝒊 + ෍

𝟏≤𝒊<𝒋≤𝑳

𝑱𝒊𝒋(𝒂𝒊, 𝒂𝒋)

• Calculation :M. Ekeberg, T. Hartonen, E. Aurell, Fast 
pseudolikelihood maximization for directcoupling analysis of protein 
structure from many homologous amino-acid sequences. J. Comput. 
Phys. 276, 341–356 (2014).



Deciphering protein evolution and fitness landscapes with latent space models

Nature Communications 10,  5644 (2019).

MSA-based VAE



Code availability
The source code required to reproduce the results in this manuscript is 
freely available at
https://github.com/xqding/PEVAE_Paper.

Deciphering protein evolution and fitness landscapes with latent space models

Methods: VAE

Let 𝑺 = (𝑺𝟏, … , 𝑺𝑳). Define a binary 𝟐𝟏 × 𝑳 matrix 𝑿:

𝑿𝒊𝒋 = ቊ
𝟏 𝒊𝒇 𝑺𝒋 = 𝒊

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Let 𝑷𝜽(𝑿) be the marginal distribution of 𝑿.

Suitable for complex disease

Demonstrate that latent space 
contain evolution information.



Mutation Effect

Free Energy:
A free energy for a  sequence 𝑿(𝒔) is defined as
∆𝑮𝑽𝑨𝑬 𝒙 = − 𝐥𝐨𝐠𝑷𝜽 𝒙

Mutation Effect:
The effect of mutations is defined as the changes  in the free energy 
between a wide type sequence 𝑿 and mutant sequence 𝑿′
Mutation effect = ∆𝑮𝑽𝑨𝑬 𝑿′ − ∆𝑮𝑽𝑨𝑬(𝑿).

𝐥𝐨𝐠𝑷𝜽 𝑿 = 𝐥𝐨𝐠න𝑷𝜽 𝑿,𝒁 𝒅𝒁 = 𝐥𝐨𝐠න𝒒∅(𝒁|𝑿)
𝑷𝜽(𝑿, 𝒁)

𝒒∅(𝒁|𝑿)
𝒅𝒁

= 𝐥𝐨𝐠𝑬𝒁~𝒒∅(𝒁|𝑿)
𝑷𝜽(𝑿, 𝒁)

𝒒∅(𝒁|𝑿)
= 𝐥𝐨𝐠

𝟏

𝑵
෍

𝒊=𝟏

𝑵 𝑷𝜽(𝑿, 𝒁
𝒊)

𝒒∅(𝒁
𝒊|𝑿)

𝒁𝒊 ~𝒒∅(𝒁|𝑿)~𝑵(𝝁, 𝚺)

𝐥𝐨𝐠𝑷𝜽(𝑿) ≈ σ𝒊=𝟏
𝑵 𝓛 𝜽, ∅, 𝑿 𝒊

Important Sampling



𝒑𝜽 𝑿 = න𝑷𝜽 𝒁 𝑷𝜽 𝑿 𝒁 𝒅𝒁

𝒍𝒐𝒈𝒑𝜽(𝑿) ≥ 𝓛(𝜽, ∅, 𝑿) , where 

𝓛 𝜽, ∅, 𝑿 = 𝑬𝒒∅ 𝒁 𝑿 𝒍𝒐𝒈𝒑𝜽(𝑿|𝒁) − 𝑲𝑳(𝒒∅ 𝒁 𝑿 ԡ𝒑𝜽 𝒁 ) , 

KL distance: = 𝑬𝒒∅ 𝒁 𝑿 [𝐥𝐨𝐠
𝒒∅ 𝒁 𝑿
𝒑𝜽 𝒁

]Evidence Lower Bound ( ELBO)

The ELBO provides a general framework for VAE. The VAE consists of encoder and 

decoder.  The posterior 𝒒∅(𝒁|𝑿) represents to encode the observed  sequence 𝑿 and  

maps variables 𝑿 into latent variables 𝒁 and the conditional distribution 𝒑𝜽(𝑿|𝒁)

represents to decode the latent variables 𝒁 back to the original variables 𝑿. 

Maximizing  ELBO to estimate the parameters 𝜽, ∅

Encoder: 𝒒∅ 𝒁 𝑿 , Decoder: 𝒑𝜽(𝑿|𝒁)



14.4. Genotype Language Models

Intuitively, our goal is to identify variants that induce high semantic 
change (e.g., a large impact on biological function) while being 
grammatically acceptable (e.g, biologically viable)

14.4.1. Token

One genotype has two sites, each site has four letters: 𝐴, 𝐶, 𝐺, 𝑇.
Therefore, all possible number of genotypes is 42.

Figure 1 illustrates how a one-hot vector is used to tokenize each genotype

Consider a sequence of tokenized genotypes:  

𝑥 =

𝑥𝑔
1

⋮
𝑥𝑔
𝐾
, 𝑥𝑔

𝑖 = 𝑜𝑛𝑒 𝑜𝑓 𝑥𝑔𝑗
𝑖 , 𝑗 = 1,… , 16.



Figure 1. Token for genotypes

𝐴𝐴
𝐴𝐶
𝐶𝐴
𝐴𝐺
𝐺𝐴
𝐴𝑇
𝑇𝐴
𝐶𝐶
𝐶𝑇
𝑇𝐶
𝐶𝐺
𝐺𝐶
𝑇𝑇
𝑇𝐺
𝐺𝑇
𝐺𝐺

𝐴𝐴 =

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

𝐺𝐺 =

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

⋯

Define a genotype vector:

𝑔 =

𝑔1
⋮
𝑔𝐾

𝑘 = 16



Multi-Head Attention

Layer Norm

Feed Forward

Layer Norm

𝐿 ×

Transformer Layers

Embedding  (Z)

Linear Projection and Position 
Embedding

Class AA \ AG \ TG CC

Feed Forward & Softmax

CC 0.3
CG 0.1
GG 0.2
TG 0.0

AT 0.4
TT 0.1
AA 0.1
TG 0.0

𝑃1 𝑃2𝐿 = log 𝑃1 𝐶𝐶)

+. . + log 𝑃𝑀(𝐴𝑇)

Loglikelihood over
Masker positions



14.4.2. Model architecture
In this work, the input of the model consisted of the sequence characters 

corresponding to the genotype forming the variations in a gene. Each 

genotype is first tokenized, i.e., mapped to their index in the vocabulary 

containing the 16 genotypes, and then projected to an embedding space:

𝑍0 =

𝑥𝑐𝑙𝑎𝑠𝑠
𝑥𝑔
1𝐸𝑔
⋮

𝑥𝑔
𝐾𝐸𝑔

+ 𝐸𝑝𝑜𝑠 , 𝑥𝑔
𝑖 ∈ 𝑅𝑚, 𝐸𝑔 ∈ 𝑅𝑚×𝐷 , 𝐸𝑝𝑜𝑠 ∈ 𝑅 𝐾+1 ×𝐷 , 𝑚 = 16

The  embeddings were then fed to the transformer model, consisting of a number of

blocks, each composed of a self-attention operation followed by a position-wise 

multi-layer network. 

Self-attention modules explicitly construct pairwise interactions between all positions in 

the sequence which enable them to build complex representations that incorporate context 

from across the sequence. A positional encoding must be added to the embedding of each 

token to distinguish its position in the sequence.



14.4.3. Training
• Data Sources: 

(1) Allen Ancient DNA Resource (AADR):

https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-

genotypes-present-day-and-ancient-dna-data

On this page you can download a merged dataset consisting of genotypes for 

thousands of ancient and present-day individuals at up to 1.23 million positions 

in the genome (in hg19 coordinates).

(2) UK Biobank data 

UK Biobank data access guide

https://biobank.ndph.ox.ac.uk/ukb/exinfo.cgi?src=AccessingData

Genome-wide genotyping was performed on all UK Biobank participants using 

the UK Biobank Axiom Array. Approximately 850,000 variants were directly 

measured, with > 90million variants imputed using the Haplotype Reference 

Consortium and UK10K + 1000 Genomes reference panels.



(3) Database of Genotypes and Phenotypes (dbGaP)

https://ncbiinsights.ncbi.nlm.nih.gov/tag/dbgap/

dbGaP contains more than 500 NGS case–control studies

(4) The 1000 Genomes Project

(5) Genome of the Netherlands Consortium 

DoctorGLM: Fine-tuning your Chinese Doctor is not a Herculean Task

Honglin Xiong et al. 2023.



14.4.4. Loss Function
Each input sequence was corrupted by replacing a fraction of the genotypes  

with a special mask token [MASK]. The network was then trained to predict 

the missing tokens [MASK] from the corrupted sequence.

for each sequence  , we randomly sampled a set of indices 𝑥 , for which the 

genotype  tokens are replaced by a mask token, resulting in a corrupted 

sequence ෤𝑥 . During pre-training, the set M was defined such that 15% of the 

genotypes in the sequence are corrupted:

When corrupted, a genotype has a 10% chance to be replaced by another 

randomly selected genotype, an 80% chance of being masked and 10% 

chance of being unchanged.    

During fine-tuning these probabilities do not change, however, only 2.5% of the 
genotypes  in the sequence are corrupted.



Let 𝑀 be the set of masked tokens, 𝑥 be a sequence of genotypes and 

෤𝑥 be a corrupted sequences by mask tokens.

Define

𝑍 = 𝑍𝑐𝑙𝑎𝑠 , 𝑍1, … , 𝑍𝐾 , 𝑍𝑖 ∈ 𝑅𝐷, 𝑍 ∈ 𝑅𝐷×(𝐾+1)

𝑎𝑖 = 𝑊𝑍𝑖 + 𝑏,𝑊 ∈ 𝑅𝑚×𝐷 , 𝑏 ∈ 𝑅𝑚, 𝑚 = 16

𝑎𝑖 =
𝑎𝑖
1

⋮
𝑎𝑖
16

, 𝑃𝑖 =
𝑝𝑖
1

⋮
𝑃𝑖
16

, i ∈ 𝑀

𝑃𝜃 𝑥𝑖 ෤𝑥 = 𝑃𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑍𝑖 + 𝑏)
𝑃𝑖
𝑗
=

exp(𝑎𝑖
𝑗
)

σ
𝑗′=1
16 exp(𝑎𝑖

𝑗′
)

The training objective corresponds to the negative log-likelihood of the true 

sequence 𝑥𝑖
𝑗
, 𝑖 ∈ 𝑀 (𝑗𝑡ℎ 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) at the corrupted positions:

𝑚𝑖𝑛𝜃 𝐿𝜃 ෤𝑥 𝑥 = −෍
𝑖∈𝑀

log 𝑃𝜃(𝑥𝑖| ෤𝑥) (1)

Output pf last layer in transformer.



14.4.5. Score Calculations (Inference)

Once fine-tuned, the model was used to compute the semantic change and 

the log-likelihood to characterise gene.

Formally, an input sequence was represented by a sequence of tokens defined as 

𝑥 =

𝑥𝑔
1

⋮
𝑥𝑔
𝐾

where  𝐾 is the number of tokens and  𝑥𝑔
𝑖 ∈ 𝜒 where 𝜒 that contains the 

genotype tokens and other tokens such as class and mask tokens. In this work, a 

class token was appended to all sequences before feeding them to the network, as 

such 𝑥𝑔
1represents the class token, while 𝑥𝑔

2, … 𝑥𝑔
𝐾represents the genotypes, or 

masked genotypes, in the gene. The sequence  𝑥 is passed through attention 

layers. 

• Notations

Define 𝑍 = 𝑍1, … , 𝑍𝐾 𝑎𝑠 the output of the last attention layer where  𝑍𝑖 is the 

sequence embedding vector at position 𝑖 . 



Multi-Head Attention

Layer Norm

Feed Forward

Layer Norm

𝐿 ×

Transformer Layers

Embedding  (Z)

Linear Projection and Position 
Embedding

Class AA 𝑪𝑪 AG 𝑻𝑻 TG CC

Feed Forward & Softmax

AA 0.3
AG 0.1
GG 0.2
TG 0.0

CC0.3
CT 0.1
TT0.2
TG 0.0

𝑃1 𝑃𝐾𝐿 = log 𝑃1 𝐴𝐴

+. . + log𝑃𝐾(𝐶𝐶)

Loglikelihood over 
positions in the 
sequence.

⋯



• Computing Fitness
Step 1: Pretraining

Step 2: Fine-tune

The last attention layer output 𝑍 is transformed by a feed-forward layer and 

a softmax activation into a vector of probabilities over tokens at each 

position

𝑎𝑖 = 𝑊𝑍𝑖 + 𝑏, 𝑊 ∈ 𝑅𝑚×𝐷 , 𝑍𝑖 ∈ 𝑅𝐷 , 𝑏 ∈ 𝑅𝑚

𝑃𝑖 == 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊𝑍𝑖 + 𝑏 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖)

Fitness is defined as the log-likelihood of a variant  𝒍(𝒙) and is computed 

from these probabilities. 

Let 𝒍(𝒙𝒏
𝒊 ) be a log probability of the individual 𝑛 being the genotype 𝑥𝑗𝑛

𝑖

at the 𝑖𝑡ℎ position of the genome, which is defined as fitness (𝑬 𝒍 𝒙𝒏
𝒊 = 𝑽𝑨)

where 𝑚 is the number of 

genotypes and some tokens, 



This quantity  L 𝑥𝑛
𝑖 measures the likelihood of observing genotypes 𝑥𝑗𝑛

𝑖 in the 𝑖𝑡ℎ

position of the gene   according to the model. It measures the fitness.  

𝑎𝑖 =
𝑎1
𝑖

⋮
𝑎𝑚
𝑖

= 𝑊𝑍𝑖 + 𝑏, 𝑎𝑗
𝑖 = 𝑊𝑗.𝑍

𝑖 + 𝑏𝑗

log 𝑃 𝑥𝑛
𝑖 = 𝑥𝑗𝑛

𝑖 |𝑥 = log 𝑃𝑗𝑛
𝑖 = 𝑊𝑗𝑛.𝑍𝑛

𝑖 + 𝑏𝑗𝑛 − log෍
𝑗𝑛
′
exp(𝑊𝑗𝑛

′ . 𝑍𝑛
𝑖 + 𝑏𝑗𝑛′ )

𝑃𝑖 =
𝑃1
𝑖

⋮
𝑃𝑚
𝑖

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊𝑍𝑖 + 𝑏 , 𝑝𝑗
𝑖 =

exp(𝑊𝑗.𝑍
𝑖+𝑏𝑗)

σ𝑗′ exp(𝑊𝑗′.𝑍
𝑖+𝑏𝑗′)

𝑙 𝑥𝑖 =෍
𝑛=1

𝑁

log 𝑙 𝑥𝑛
𝑖 =෍

𝑛=1

𝑁

log 𝑃 𝑥𝑛
𝑖 = 𝑥𝑗𝑛

𝑖 |𝑥

=෍
𝑛=1

𝑁

𝑊𝑗𝑛.𝑍𝑛
𝑖 + 𝑏𝑗𝑛 − log෍

𝑗𝑛
′
exp(𝑊𝑗𝑛

′ . 𝑍𝑛
𝑖 + 𝑏𝑗𝑛′ ) =෍

𝑛=1

𝑁

𝑊𝑗𝑛.𝑍𝑛
𝑖 +෍

𝑛=1

𝑁

𝑏𝑗𝑛 −෍
𝑛=1

𝑁

log෍
𝑗𝑛
′
exp(𝑊𝑗𝑛

′ . 𝑍𝑛
𝑖 + 𝑏𝑗𝑛′ )



14.4.6. Cases – Control Studies

• Null Hypothesis:

𝐻0: There is no difference in fitness between cases and controls.

𝐻𝑎: Presence of difference in fitness between cases and controls.  𝑯𝒂: 𝑽
𝑨 ≠ 𝑽𝑪

• Notations and Fitness in Cases and Controls.

𝑛𝐴: Number of cases

𝑛𝐶: Number of controls

𝑙 𝑥𝑛
𝑖 : fitness of the individual 𝑛 in cases at the 𝑖𝑡ℎ position in a gene with a 

genotype 𝑥𝑗𝑛
𝑖 . 

𝑙 𝑦𝑛
𝑖 : fitness of the individual 𝑛 in controls at the 𝑖𝑡ℎ position in a gene with a 

genotype 𝑦𝑗𝑛
𝑖 .

𝑯𝟎: 𝑽
𝑨 = 𝑽𝑪



𝑙 𝑥𝑛
𝑖 = log𝑃 𝑥𝑛

𝑖 = 𝑥𝑗𝑛
𝑖 |𝑥 = 𝑊𝑗𝑛.

𝐴𝑍𝐴𝑛
𝑖 + 𝑏𝑗𝑛

𝐴 − log෍
𝑗𝑛
′
exp(𝑊𝑗𝑛

′ .
𝐴 𝑍𝐴𝑛

𝑖 + 𝑏𝑗′𝑛
𝐴 )

𝑙 𝑦𝑛
𝑖 = log 𝑃 𝑦𝑛

𝑖 = 𝑦𝑗𝑛
𝑖 |𝑦 = 𝑊𝑗𝑛.

𝐶 𝑍𝐶𝑛
𝑖 + 𝑏𝑗𝑛

𝐶 − log෍
𝑗𝑛
′
exp(𝑊𝑗𝑛

′ .
𝐶 𝑍𝐶𝑛

𝑖 + 𝑏𝑗𝑛′
𝐶 )

• Define average fitness in cases and controls for marker 𝒊:

ҧ𝑙𝐴 =
1

𝑛𝐴
෍

𝑛=1

𝑛𝐴
𝑙 𝑥𝑛

𝑖

ҧ𝑙𝐶 =
1

𝑛𝐶
෍

𝑛=1

𝑛𝐶
𝑙 𝑦𝑛

𝑖

• Define covariance matrix under the null hypothesis:

Λ = 𝑣𝑎𝑟( ҧ𝑙𝐴 − ҧ𝑙𝐶) =
1

𝑛𝐴
var(𝑙 𝑥𝑛

𝑖 )+ 
1

𝑛𝐶
var(𝑙 𝑦𝑛

𝑖 ) =
1

𝑛𝐴
+

1

𝑛𝐶
𝜎2

ො𝜎2 = var(𝑙 𝑥𝑛
𝑖 = var(𝑙 𝑦𝑛

𝑖 =
1

𝑛𝐴 + 𝑛𝐶 − 2
෍

𝑛=1

𝑛𝐴
𝑙 𝑥𝑛

𝑖 − ҧ𝑙𝐴
2
+෍

𝑛=1

𝑛𝐶
𝑙 𝑦𝑛

𝑖 − ҧ𝑙𝐶
2



• Association Tests

Single Marker

𝑇𝑠 =
𝑛𝐴𝑛𝐶

𝑛𝐴 + 𝑛𝐶

ҧ𝑙𝐴 − ҧ𝑙𝐶
2

ො𝜎2
(3)

Distribution

Under the null hypothesis 𝑻𝒔~𝝌(𝟏)
𝟐

Multiple Markers oa a Gene

Define

𝑙 𝑥𝑛 =
𝑙(𝑥𝑛

1)
⋮

𝑙(𝑥𝑛
𝐾)

, 𝑙 𝑦𝑛 =
𝑙(𝑦𝑛

1)
⋮

𝑙(𝑦𝑛
𝐾)

, ҧ𝑙𝐴 =

ҧ𝑙𝐴
1

⋮
ҧ𝑙𝐴
𝐾
, ҧ𝑙𝐶 =

ҧ𝑙𝐶
1

⋮
ҧ𝑙𝐶
𝐾

ҧ𝑙𝐴~𝑁 𝑉𝐴,
1

𝑛𝐴
ො𝜎2 , ҧ𝑙𝐶~𝑁(𝑉

𝐶 ,
1

𝑛𝐶
ො𝜎2)



• Estimation of Covariance Matrix

𝜉 = ҧ𝑙𝐴 − ҧ𝑙𝐶 , Λ = 𝑐𝑜𝑣 𝜉, 𝜉 =
1

𝑛𝐴
+

1

𝑛𝐶
Σ ෡Λ =

1

𝑛𝐴
+

1

𝑛𝐶
S

𝑆 =
1

𝑛𝐴 + 𝑛𝐶 − 2
෍

𝑛=1

𝑛𝐴
𝑙 𝑥𝑛 − ҧ𝑙𝐴 𝑙 𝑥𝑛 − ҧ𝑙𝐴

𝑇
+ 𝑙 𝑦𝑛 − ҧ𝑙𝐶 𝑙 𝑦𝑛 − ҧ𝑙𝐶

𝑇

• Test Association

𝑇𝑀 = ҧ𝑙𝐴 − ҧ𝑙𝐶
𝑇෡Λ−1 ҧ𝑙𝐴 − ҧ𝑙𝐶 (4)

Under the null hypothesis, 𝑻𝑴~𝝌(𝑲)
𝟐

ҧ𝑙𝐴~𝑁 𝑉𝐴,
1

𝑛𝐴
Σ , ҧ𝑙𝐶~𝑁 𝑉𝐶 ,

1

𝑛𝐶
Σ , ҧ𝑙𝐴 − ҧ𝑙𝐶~𝑁(0, Λ)

𝑉𝐴 = 𝐸 𝑙 𝑥𝑛 =
𝑉1
𝐴

⋮
𝑉𝐾
𝐴
, 𝑉𝐶 = 𝐸 𝑙 𝑦𝑛 =

𝑉1
𝐴

⋮
𝑉𝐾
𝐴



• QTL

𝑦𝑛 = 𝜇 +෍
𝑖=1

𝐾

𝑙 𝑥𝑛
𝑖 𝛽𝑛 + 𝜀𝑛, 𝑛 = 1,… ,𝑁

𝑦𝑛: A quantitative trait of individual 𝑖



14.4.7. Semantic Embedding and Mutation Effect  

Notations

𝑍𝐴𝑛
𝑖 ∈ 𝑅𝐻:  Embedding vector of individual 𝑛 in cases with genotype in position 𝑖

𝑍𝐶𝑛
𝑖 ∈ 𝑅𝐻 : Embedding vector of individual 𝑛 in controls with genotype in position 𝑖

ҧ𝑍𝐴
𝑖 =

1

𝑛𝐴
෍

𝑛=1

𝑛𝐴
𝑍𝐴𝑛
𝑖 , ҧ𝑍𝐶

𝑖 =
1

𝑛𝐶
෍

𝑛=1

𝑛𝐶
𝑍𝐶𝑛
𝑖

𝜉 = ҧ𝑍𝐴
𝑖 − ҧ𝑍𝐶

𝑖 , 𝑉𝑎𝑟 𝜉 = Λ =
1

𝑛𝐴
+

1

𝑛𝐶
Σ

෡Λ =
1

𝑛𝐴
+

1

𝑛𝐶
S, S =

1

𝑛𝐴 + 𝑛𝐶 − 2
෍

𝑛=1

𝑛𝐴
𝑍𝐴𝑛
𝑖 − ҧ𝑍𝐴

𝑖 𝑍𝐴𝑛
𝑖 − ҧ𝑍𝐴

𝑖 𝑇
+෍

𝑛=1

𝑛𝐶
𝑍𝐶𝑛
𝑖 − ҧ𝑍𝐶

𝑖 𝑍𝐶𝑛
𝑖 − ҧ𝑍𝐶

𝑖 𝑇

𝜇𝐴 =
𝜇𝐴
1

⋮
𝜇𝐴
𝐻

= 𝐸 𝑍𝐴𝑛
𝑖 , 𝜇𝐶 =

𝜇𝐶
1

⋮
𝜇𝐶
𝐻

Σ = 𝐶𝑜𝑣(𝑍𝐴𝑛
𝑖 , 𝑍𝐴𝑛

𝑖 )



• Test Statistic

Single Marker

• Null Hypothesis

𝐻0: There is no difference in embedding of genotype in position 𝑖 between cases and controls 

𝐻𝑎: Presence of difference in embedding of genotype in position 𝑖 between cases and controls

𝑻𝒔 = ഥ𝒁𝑨
𝒊 − ഥ𝒁𝑪

𝒊 𝑻෡𝜦−𝟏 ഥ𝒁𝑨
𝒊 − ഥ𝒁𝑪

𝒊

Under the null hypothesis, 𝑻𝒔~𝝌(𝑯)
𝟐

Multiple Markers or a Gene

ҧ𝑍𝐴𝑛 =
1

𝐾 − 1
෍

𝑖=2

𝐾

𝑍𝐴𝑛
𝑖 , ҧ𝑍𝐶𝑛 =

1

𝐾 − 1
෍

𝑖=2

𝐾

𝑍𝐶𝑛
𝑖

ҧ𝑍𝐴 =
1

𝑛𝐴
෍

𝑛=1

𝑛𝐴
ҧ𝑍𝐴𝑛, ҧ𝑍𝐶 =

1

𝑛𝐶
෍

𝑛=1

𝑛𝐶
ҧ𝑍𝑐𝑛

𝑯𝟎: 𝝁𝑨 = 𝝁𝑪

ҧ𝑍𝐴
𝑖~𝑁 𝜇𝐴,

1

𝑛𝐴
Σ , ҧ𝑍𝐶

𝑖~𝑁 𝜇𝐶 ,
1

𝑛𝐶
Σ



𝑉𝑎𝑟 ҧ𝑍𝐴 − ҧ𝑍𝐶 = Λ =
1

𝑛𝐴
+

1

𝑛𝐶
Σ

෡Λ =
1

𝑛𝐴
+

1

𝑛𝐶
S,

S =
1

𝑛𝐴 + 𝑛𝐶 − 2
෍

𝑛=1

𝑛𝐴
ҧ𝑍𝐴𝑛 − ҧ𝑍𝐴 ҧ𝑍𝐴𝑛 − ҧ𝑍𝐴

𝑇
+෍

𝑛=1

𝑛𝐶
ҧ𝑍𝐶𝑛 − ҧ𝑍𝐶 ҧ𝑍𝐶𝑛 − ҧ𝑍𝐶

𝑇

• Null Hypothesis

𝐻0: There is no difference in the total embedding of the genotype in a genomic region 

between cases and controls. 

𝐻𝑎: Presence of difference in the total embeddings of the genotypes in a genomic region 
between cases and controls.  

Define test statistics

𝑻𝒎 = ഥ𝒁𝑨 − ഥ𝒁𝑪
𝑻෡𝜦−𝟏 ഥ𝒁𝑨 − ഥ𝒁𝑪

Under the null hypothesis, 𝑻𝒎~𝝌(𝑯)
𝟐

ҧ𝑍𝐴~𝑁 𝜇𝐴,
1

𝑛𝐴
Σ𝐴 , ҧ𝑍𝐶~𝑁(𝜇𝐶 ,

1

𝑛𝐶
Σ𝐶)

Σ𝐴 = 𝐶𝑜𝑣 𝑍𝐴𝑛
𝑖 , 𝑍𝐴𝑛

𝑖 , Σ𝐶 = 𝐶𝑜𝑣(𝑍𝐶𝑛
𝑖 , 𝑍𝐶𝑛

𝑖 )



Justification for Tests
Euclidean 

Embedding 
Data

𝑋𝐴, 𝜇0,
𝐴 Σ0

𝐴

𝑋𝐶 , 𝜇0
𝐶 , Σ0

𝐶

Non-
Euclidean 

Original Data

Nonlinear Mapping

𝑍𝐴, 𝜇𝐸
𝐴, Σ𝐸

𝐴

𝑍𝐶 , 𝜇𝐸
𝐶 , Σ𝐸

𝐶

𝑍𝐴 ≈ 𝑓 𝜇0
𝐴 + 𝐵(𝑋𝐴 − 𝜇0

𝐴)

𝑍𝐶 ≈ 𝑓 𝜇0
𝐶 + 𝐷(𝑋𝐶 − 𝜇0

𝐶)

ҧ𝑍𝐴~𝑁 𝜇𝐸
𝐴,
1

𝑛𝐴
Σ𝐸
𝐴 , 𝑍𝐶~𝑁 𝜇𝐸

𝐶 ,
1

𝑛𝐶
Σ𝐸
𝐶 , 𝑇𝐸 = ҧ𝑍𝐴 − ҧ𝑍𝐶

𝑇
Λ−1 ҧ𝑍𝐴 − ҧ𝑍𝐶

𝜇𝐸
𝐴 = 𝐸 𝑍𝐴 ≈ 𝑓 𝜇0

𝐴 , Σ𝐸
𝐴 = 𝐶𝑜𝑣(𝑍𝐴) ≈ 𝐵Σ0

𝐴𝐵𝑇 , 𝐵 =
𝜕𝑓

𝜕 𝑋𝐴 𝑇

𝜇𝐸
𝐶 = 𝐸 𝑍𝐶 ≈, 𝑓 𝜇0

𝐶 , Σ𝐸
𝐶 = 𝐶𝑜𝑣(𝑍𝐶) ≈ 𝐷Σ0

𝐶𝐷𝑇, 𝐷 =
𝜕𝑓

𝜕 𝑋𝐶 𝑇

Λ =
1

𝑛𝐴
𝐵Σ0

𝐴𝐵𝑇 +
1

𝑛𝐶
𝐷Σ0

𝐶𝐷𝑇 , Under 𝐻0, 𝑇𝐸~𝜒(𝐻)
2

Function of 
Embedding



Power Calculation of the Nonlinear Tests 

𝑻𝑬 = ഥ𝒁𝑨 − ഥ𝒁𝑪
𝑻
𝜦−𝟏 ഥ𝒁𝑨 − ഥ𝒁𝑪 ~Noncentral 𝝌(𝑯)

𝟐 with

• Under alternative hypothesis 𝑯𝒂,

Noncentrality 𝝀

𝜆 = 𝑓 𝜇0
𝐴 − 𝑓(𝜇0

𝐶)
𝑇
Λ−1 𝑓 𝜇0

𝐴 − 𝑓(𝜇0
𝐶)

𝑓 𝜇0
𝐴 − 𝑓 𝜇0

𝐶 ≈ 𝐷 𝜇0
𝐴 − 𝜇0

𝐶 +
1

2

𝜇0
𝐴 − 𝜇0

𝐶 𝑇
𝐻1 𝜇0

𝐴 − 𝜇0
𝐶

⋮

𝜇0
𝐴 − 𝜇0

𝐶 𝑇
𝐻𝐻 𝜇0

𝐴 − 𝜇0
𝐶



Justification for  Tests

• Transformer models can universally approximate arbitrary 

continuous sequence-to-sequence functions

Yun et al. 2020, ARE TRANSFORMERS UNIVERSAL APPROXIMATORS

OF SEQUENCE-TO-SEQUENCE FUNCTIONS?

APPROXIMATION ABILITY OF TRANSFORMER NETWORKS FOR FUNCTIONS 

WITH VARIOUS SMOOTHNESS OF BESOV SPACES: ERROR ANALYSIS AND 

TOKEN EXTRACTION, ICLR 2023.

Shi et al. 2021; SparseBERT: Rethinking the Importance Analysis in Self-attention

• Embedding  is a nonlinear sequence-to-sequence function. 

Hypothesis testing on embedding is a nonlinear hypothesis 

test.

Zhao J, Jin L, Xiong MM. (2006) Nonlinear tests for genome-wide association 

studies. Genetics. 174:1529-1538.
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