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1.1. Requirements of current artificial intelligence

1.1.1. Cognitive Tasks
Many applications run machine learning algorithms to perform cognitive tasks.

The learning algorithms have been shown effectiveness for many tasks, e.g., object
tracking , speech recognition , imag classification , etc. However, the high computational
complexity and memory requirement of existing deep learning algorithms hinde usabilit
to a wide variety of real-life embedded applications where the device resources and

power budget is limited. A Survey on Hyperdimensional Computing aka Vector Symbolic
: Architectures, Part I: Models and Data Transformations, 2022
1.1.2. Edge Computing
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1.1.3. Requirement

* Redesign the algorithms themselves using strategies that more closely
model the ultimate efficient learning machine: the human brain.
Hyperdimensional computing (HDC) is one such strategy developed by
Interdisciplinary research.

e Itis based on a short-term human memory model, Sparse distributed memory,
emerged from theoretical neuroscience . HDC is motivated by the understanding
that the human brain operates on highdimensional representations of data
originating from the large size of brain circuits.

1.1.4. Advantages

* Computationally efficient (highly parallel at heart) to train and amenable to hardware
level optimization.

« HDC offers an intuitive and human-interpretable model.

It offers a computational paradigm that can be applied to cognitive as well as
learning problems



« It provides strong robustness to noise — a key strength for loT systems, and
« HDC can naturally enable secure and light-weight learning.
* These features make HDC a promising solution for today’s embedded devices
with limited storage, battery, and resources, as well as future computing systems
In deep nano-scaled technology, where devices may have high noise and
variability.
* Recently, several companies started exploiting the HDC capabillity to enable

general intelligence in 10T devices, including Interl, WebFeet, Vicarious,
Numenta, IBM, and Google.

* Processing of information in ways that are more akin to how the human brain
operates.

 Non von Neumann architecture
« Complex mathematical objects that can represent multiple variables at once.

Imani et al. 2021, Revisiting HyperDimensional Learning for FPGA and Low-Power
Architectures



1.2. Three types of data space
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One Hot Vector Encoding for Natural Language Processing
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1.2.3. Hyperdimensional Encoder
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» 1.3. Two types of mapping from Non-
Euclidean to Euclidean Space

 1.3.1. Mapping based on Tokens
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« 1.3.2. Hyperdimensional Vector Mapping

Hyperdimensional Inference Layer
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An apple is both a fruit, a
color, a shape, ... Can we
represent it in a digital
form where all these
aspects can be separated
and yet when seen all
together convey the
meaning of “apple”? Image
credit: Myriam Wares,
Quanta Magazine

Hyperdimensional Computing Reimagines Artificial Intelligence | WIRED
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« Forrobots to be as intelligent as humans in various
tasks, they need to coordinate sensory data with
robotics motor capabilities.

« Scientists from the University Of Maryland published
a paper in their journal Science Robotics describing
a potentially revolutionary approach to improve the
way Al handles sensorimotor representation using
hyperdimensional computing theory.

« The researchers aimed at creating a way to improve
a robot’s “active perception” and the robot’s ability
to integrate the way a machine will fit in the world
around it.

» Instead, they proposed “a method of encoding
actions and perceptions together into a single
space that is meaningful, semantically informed, and
consistent by using hyperdimensional binary vectors
(HBVs).”

» As more information gets stored, “history” vectors
will be created, increasing the machine’s memory
content. This will result in robots being better at
making autonomous decisions, expecting future
situations, and completing tasks.

Komarraju, 2021. What Is Hyperdimensional Computing & Its Role In Robotics



1.4. Difference In analysis between Hyperdimen
Computing and Statistics

« 1.4.1. Paradigm of Statistical Analysis

« Model




Limitations
 |Inference

« Large computational time

* Large energy
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1.4.2. Hyperdimensional computing Procedures

single-pass training * Training:
1) Encode each sample to vector
c—— 1) ple to
-—-* > Query vector (2) Sum the sample vector in each
LAl lSimiIarity class and form class hyper vector
()]
- o ° I
P T % odal .5; Testing
0 o —» C, | .| 2 (1) Encode test sample to query
Data © : g | (2) Search the most similar class
- . € | vector fof query vector to
W = Ci ™ = | determine the class.
Advantages

(1) Small computational time, (2) less energy, (3) less data, (4) less costs,
(5) similar accuracy.

Hyperdimensional computing classification overview
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1.5. Perspective of Hyperdimensional Computing

1.5.1. References

« ANIL ANANTHASWAMY , June 2023
Hyperdimensional Computing Reimagines Atrtificial Intelligence By imbuing
enormous vectors with semantic meaning, scientists can get machines to reason

more abstractly—and efficiently—than before.
* Roberto Saracco, Jyly 2023

IEEE Future Direction

Hyperdimensional computing

« Stephan Hattingh, June 2023
Unraveling the Future of Al with Hyperdimensional Computing



Potential Applications

1. Natural Language Processing (NLP)
2. Image and Video Analysis

3. Healthcare and Diagnostics

Cheng-Yang Chang et al. 2023

Commpanies working in this area:

Interl, WebFeet, Vicarious,
Numenta, IBM, and Google.
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AWS

Build 10T Solutions

for Free on AWS

loT services for industrial, consumer, and
commercial solutions

Learn more about AWS loT

Unleash loT with Intelligent Edge Devices

Drivers Enable rapid business intelligence at the
for Edge w edge with technologies for the Internet of
&= Things (loT).

Network Core Cloud

Edge or Network Data
Regional Center

https://www.intel.com/content/www/us/en/e
dge-computing/edge-devices.html




 Types of Edge Devices

Edge devices vary widely in physical form and capability since they serve many
different purposes. Intelligent edge devices offer capabilities beyond those of RFIL
tags, temperature detectors, and vibration sensors. With built-in processors, these
smart devices can accommodate advanced capabilities like onboard analytics or
Al.

For example, intelligent edge devices used in manufacturing may include
vision-guided robots or industrial PCs. Digital cockpit systems built into
commercial vehicles can help support driver assistance. In hospitals, devices
monitoring patients can look for changes in vital signs and notify medical
personnel when needed. Smart cities are deploying 10T devices t0 monitor

weather conditions and traffic patterns and to give citizens real-time

Information on public transit.
https://www.intel.com/content/www/us/en/edge-computing/edge-devices.html



N\
A

NN
L SORRRNRN

D NN
A NSANNR

NN
NS¢

W\

/
7
/
7
S
4

Edge Devices and Computer Vision

| | =

Anndfinfsf Andnsaidhe aall !
LEHEL v | YRS

2 . J d S48 8 .

»

LELE

I




Connecting Edge Devices to a Network




Edge Cloud

https://www.intel.com/content/www/us/
en/edge-computing/edge-devices.html|

Computer Vision Solutions for Edge Applications



IBM Edge Computing

https://www.ibm.com/edge-computing

Improve supply chain and asset
management

Orchestrate management from end to
end with intelligent video analytics and
Al to monitor stock, automate
replenishment and more.

Create connected experiences

Pull and analyze data from
distributed devices and sensors to
Improve individual experiences,
enhance driver safety and optimize
transport.



Enable Industry 4.0 Learn how autonomous management will
revolutionize your edge computing
_ ~approach.
https://www.ibm.com/edge-computing
Gartner estimates that by 2025, 75% of data
will be processed outside the traditional data
center or cloud.?



Intelligent Healthcare

¢ Low cost manufacturing process
o Reliability, high quality, on-demand capabilities
o Lliminate the long haul delivery requirements

o Minimize the losses and etrors
o [ncrease margins, reduce operational costs
o [Efficient communication between the stakehoklers

o Manufacturing of personalized implants
» Performing surgeries in a more precise way
o Reduced Error Rates = Better Patient Care

=T =T
A- o Mass Personalization ¥ !

o Mass Production

o Electronics
o [T Systems

* Improved Productivity
« [nnovation and higher quality products
o Energy Efficiency

o Improves visualization and creativity
o Interactive Leaming Experience
o Real-time blended teaching and leaming

i 8

« Ability to handle consequences of the disaster
¢ Used in scarch and rescue operation
o Enhance the level of preparedness

o Division of Labour
o Electrical Energy
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Industry 5.0




Modern healthcare is powered by data. There
are roughly 10 billion 10T (internet of things)
medical devices used in healthcare today, such
as pacemakers, insulin pumps, and heart rate
monitors. These devices generate a lot of data,
which is processed and analyzed by software
o applications to help clinicians provide better
Edge Computing in Healthcare:  c5r6 Typically, the data collected from these
Benefits and Best Practices remote devices must be sent somewhere else to
be processed — often to an application hosted in

a centralized data center or the cloud. However, this is proving too inefficient for the rea
time data processing needed in the healthcare industry, where doctors and patients nee
fast, accurate care solutions. Edge computing in healthcare is the practice of movir
computing power and data processing systems closer to the sources of medical
data so it can be analyzed at the speed needed to save lives and improve patient
outcomes.




How Edge Computing is Transforming Healthcare

https://developer.nvidia.com/blog/healthcare-at-the-edge/

How Edge Computing is

. What Is a Smart Hospital?
Transforming Healthcare P

- DAVID NIEWOLNY (2022
By Vanessa Braunstein (2021) by (2022)

nvidia



Cloud Computing in Healthcare zpe
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Patient data from mobile EMS
units, clinics, wearable
sensors, and in-home

devices must be transmitted
to and from the cloud.

All data passes through
the central firewall via

VPN, creating bottlenecks.
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Patient data from healthcare
+ 1 facilities is processed by on-
site edge compute resources.
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l = without VPNs.

SD-WAN allows clinicians to

In-home monitoring data is
processed and analyzed by edge
computing resources built into
medical devices.

Cloud computing vs. edge computing in healthcare

https://zpesystems.com/resources/edge-computing-in-healthcare-zs/



Annesha Debroy, June 16, 2023

Hyperdimensional Computing:
The Future of Al is Here - Are You
Ready?

https://www.linkedin.com/pulse/hyperdimensional-computing-future-ai-here-you-
ready-annesha-debroy/
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