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• Decoding speech from brain activity is a long-awaited goal in both healthcare 
and neuroscience

extending this approach to natural  speech and non-invasive brain recordings remains a 
major challenge

Invasive devices have recently led to major milestones in this regard: deep-learning 
algorithms trained on intracranial recordings can now start to decode elementary linguistic 
features such as letters, words and  .

• Here we introduce a model trained with contrastive learning to decode 
self-supervised representations of perceived speech from the non-invasive 
recordings of a large cohort of healthy individuals

curate and integrate four public datasets, encompassing 175 volunteers recorded with 
magneto-encephalography or electro-encephalography while they listened to short stories 
and isolated sentences.
allows the decoding of words and phrases absent from the training set.

the analysis of the decoder’s predictions suggests that they primarily depend on 
lexical and contextual semantic representations



• Every year, traumatic brain injuries, strokes and neurodegenerative diseases 
cause thousands of patients lose their ability to speak or even communicate



Proposed Approach

• decode speech from non-invasive brain recordings by using

(1) a single architecture trained across a large cohort of participants

(2) deep representations of speech learned with self-supervised learning on a large 
quantity of speech data.

• focus the present work on speech perception in healthy volunteers rather 
than speech production in patients



Model approach. We aim to decode speech
from the brain activity of healthy participants
recorded with MEG or EEG while they listen to
 stories and/ or sentences. For this, our model 
extracts the deep contextual representations
of 3 s speech signals (Y of F feature by T time
 samples) from a pretrained
 speech module’ (wav2vec 2.0: ref. 29).

learns the representations (Z) of
the brain activity on the corresponding 3 s 
window (X of C recording channels
by T time samples) that maximally align with 
these speech representations with a 
contrastive loss. 

The representation Z is given by a deep
convolutional network. At evaluation, we inpu
t the model with left-out sentences
and compute the probability of each 3 s speech 
segment given each brain representation. 

The resulting decoding can thus be ‘zero shot’ in that the audio snippets predicted by the model need not be present in 
the training set. This approach is thus more general than standard classification approaches where the decoder can only 
predict the categories learnt during training.



wav2vec 2.0: A Framework for Self-Supervised Learning of 
Speech Representations

• encodes speech audio via a multi-layer convolutional neural network and then 
masks spans of the resulting latent speech representations

• The latent representations are fed to a Transformer network to build 
contextualized representations and the model is trained via a contrastive task 
where the true latent is to be distinguished from distractors



wav2vec 2.0
• encodes speech audio via a multi-layer convolutional neural network and then 

masks spans of the resulting latent speech representations

• The latent representations are fed to a Transformer network to build 
contextualized representations and the model is trained via a contrastive task 
where the true latent is to be distinguished from distractors



An Illustrated Tour of Wav2vec 2.0
https://jonathanbgn.com/2021/09/30/illustrated-wav2vec-2.html

wav2vec 2.0: A Framework for Self-Supervised Learning of 
Speech Representations



𝑞𝑡 = 𝑄(𝑧𝑡)

Quantization is a process of converting values from a continuous space into a finite set of values in a discrete space. 



Wav2vec 2.0  is based on the Transformer’s encoder, with a training objective 
similar to BERT’s masked language modeling objective, but adapted for speech.
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𝑝𝑔𝑣 =
exp 𝑙𝑔𝑣 + 𝑛𝑣 /𝜏

σ𝑘=1
𝑉 exp 𝑙𝑔𝑘 + 𝑛𝑘 /𝜏

n = − log(− log(u)) 

𝑢~𝒰(0,1)

𝑖 = argmax
𝑣

𝑝𝑔𝑣



𝑝𝑔𝑣 =
exp 𝑙𝑔𝑣 + 𝑛𝑣 /𝜏

σ𝑘=1
𝑉 exp 𝑙𝑔𝑘 + 𝑛𝑘 /𝜏

𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒗

𝒑𝒈𝒗



The wav2vec model instead uses a new 
grouped convolution layer to learn relative
 positional embeddings by itself.



𝑞𝑡 = 𝑄(𝑧𝑡)

Quantization is a process of converting values from a continuous space into a finite set of values in a discrete space. 



The pre-training process uses a 
contrastive task to train on unlabeled 
speech data. A mask is first randomly
applied in the latent space, 
where ~50% of the projected latent
feature vectors. Masked positions
are then replaced by the same trained 
vector Z’M before being fed to the 
Transformer network.

For each masked position, 100 negative
distractors are uniformly sampled from
other positions in the same sentence.



Training

• Objective

• Contrastive Loss

Given context network output 𝐶𝑡  centered over masked time step t, the model needs 

to identify the true quantized latent speech representation 𝑞𝑡, 

in a set of K + 1 quantized candidate representations ෤𝑞 ∈ 𝑄𝑡 which includes  𝑞𝑡 and K 
distractors.

Distractors are uniformly sampled from other masked time steps of the same utterance

ℒ𝑚 = − log
𝑒𝑥𝑝 𝑠𝑖𝑚(𝑐𝑡

′, 𝑞𝑡)/𝜅

σ ෤𝑞∈𝑄𝑡
exp(𝑠𝑖𝑚( 𝑐𝑡

′, ෤𝑞)/𝜅)
.



• Diversity Loss
The contrastive task depends on the codebook to represent both positive and
negative examples and the diversity loss Ld is designed to increase the use of the 
quantized codebook representations. We encourage the equal use of the V entries in 
each of the G codebooks by maximizing the entropy of the averaged softmax 
distribution over the codebook entries for each codebook ҧ𝑝𝑔across a batch of 

utterances; the softmax disribution does not contain the gumbel noise nor a 
temperature. 
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• Total Loss

During pre-training, we learn representations of speech audio by solving a contrastive 
task ℒ𝑚 which requires to identify the true quantized latent speech representation for a 
masked time step within a set of distractors. This is augmented by a codebook diversity 
loss ℒ𝑑 to encourage the model to use the codebook entries equally often.

ℒ = ℒ𝑚 + 𝛼ℒ𝑑



Model

𝑓(𝜒) → 𝑍(𝑧1, … , 𝑧𝑇)

𝑔(𝑍) → 𝐶(𝑐1, … , 𝑐𝑇)

Diagnosis of Disease 
(We can immediately do it)



Decoding speech perception

• Every year, traumatic brain injuries, strokes and neurodegenerative diseases 
cause thousands of patients lose their ability to speak or even communicate. 
Brain–computer interfaces (BCIs) have raised high expectations for the detection 
and restoration of communication abilities in such patients.

• In sum, decoding language from brain activity is, so far, limited either to invasive 
recordings or to impractical tasks. Interestingly, both of these approaches tend to 
follow a similar method: that is, (1) training a model on a single participant and (2) 
aiming to decode a limited set of interpretable features (Mel spectrogram, letters, 
phonemes, small set of words).

• Instead, here we propose to decode speech from non-invasive brain 
recordings by using (1) a single architecture trained across a large cohort of 
participants and (2) deep representations of speech learned  with self-
supervised learning on a large quantity of speech data



Model approach. We aim to decode speech
from the brain activity of healthy participants
recorded with MEG or EEG while they listen to
 stories and/ or sentences. For this, our model 
extracts the deep contextual representations
of 3 s speech signals (Y of F feature by T time
 samples) from a pretrained
 speech module’ (wav2vec 2.0: ref. 29).

learns the representations (Z) of
the brain activity on the corresponding 3 s 
window (X of C recording channels
by T time samples) that maximally align with 
these speech representations with a 
contrastive loss. 

The representation Z is given by a deep
convolutional network. At evaluation, we inpu
t the model with left-out sentences
and compute the probability of each 3 s speech 
segment given each brain representation. 

The resulting decoding can thus be ‘zero shot’ in that the audio snippets predicted by the model need not be present in 
the training set. This approach is thus more general than standard classification approaches where the decoder can only 
predict the categories learnt during training.



Results

• Accurately decoding speech from MEG and EEG recordings

Datasets



Top-10 segment-level accuracy (%) for a random baseline model that predicts a uniform distribution over the 
segments (‘random’), a convolutional network trained to predict the Mel spectrograms with a regression loss 
(‘base’), the same model trained with a contrastive CLIP loss (‘+ Contrastive’) and our model, which is trained to 
predict the features of wav2vec2.0 with a contrastive loss (‘+ wav2vec 2.0’). We also report the performance 
obtained with training, from scratch, a deep learning based speech representation using a contrastive
loss (‘+ Deep Mel’). Values are mean ±s.d. across three random initializations of the model’s weights. The best 
accuracy across methods is indicated in bold.

Table 2



Top-1 Accuracy. Segment-level top-1 accuracy related to Table 2.



Figure 2



Brain module’ evaluation

To evaluate the elements of the brain module, we performed a series of ablation 
experiments, and trained the corresponding models on the same data.
Overall, these ablations show that several elements impact performance: performance systematically 

decreases when removing skip connections, the spatial attention module, and the 
initial or final convolutional layers of the brain module. These results also show the 

importance of clamping the MEG and EEG signals. Finally, additional experiments show that the present 

end-to-end architecture is robust to MEG and EEG artefacts, and requires little preprocessing of 
the MEG and EEG signals



Impact of the number of participants

To test whether our model effectively leverages the inter-individual
variability, we trained it on a variable number of participants and computed
its accuracy on the first 10% of participants. As shown in Fig. 2c,
decoding performance steadily increases as the model is trained with
more participants on the two MEG datasets.

This result shows that our model effectively learns neural representations that are 
common across participants, while also accommodating participant-specific 
representations through the participant layer described in Methods



Decoded representations best correlate with phrase embeddings
• What type of representation does our model use to decode speech from brain 

signals? This interpretability question is notoriously difficult to address





Decoded representations best correlate with phrase embeddings

The R values quantify the extent to which phonemes, word frequency, part-of-speech, 
word embedding and phrase embedding predict the probability of the predicted word 
to be correct. Error bars are the s.e.m. across participants



CONTRASTIVE AUDIO-VISUAL MASKED AUTOENCODER
Yuan Gong et al (MIT),April 2023

Code and pretrained models are at https://github.com/yuangongnd/cav-mae.

Foundation model on Omics

MEG, EEG or fMRI



Methods
Appendix 

• Problem formalization
Aim to decode speech from a time series of high-dimensional brain signals recorded 
with non-invasive MEG or EEG while healthy volunteers passively listened to spoken 
sentences in their native language

Let 𝑿 ∈ 𝑹𝑪×𝑻 be a segment of a brain recording of a given participant while she listens 
to a speech segment of the same duration, with C the number of MEG or EEG sensors 
and T the number of time steps.

Let 𝑌 ∈ 𝑅𝐹×𝑇 be the latent representation of speech, using the same sample rate as 
X for simplicity, here   the Mel spectrogram with F frequency bands.

supervised decoding consists of finding a decoding function:
𝒇𝒓𝒆𝒈:  𝑅𝐶×𝑇 → 𝑅𝐹×𝑇  such that freg predicts Y given X.

෠𝑌 = 𝑓𝑟𝑒𝑔(𝑋)

Is the representation of speech decoded from the brain.



• When freg belongs to a parameterized family of models like deep neural

networks, it can be trained with a regression loss 𝐿𝑟𝑒𝑔(𝑌, ෠𝑌) (for example, the mean 

square error)

min
𝑓𝑟𝑒𝑞

෍
𝑋,𝑌

𝐿𝑟𝑒𝑔(𝑌, 𝑓𝑟𝑒𝑔 𝑋 )

This direct regression approach appears to be dominated by a
non-distinguishable broadband component when speech is present
(Extended Data Fig. 4a,b). This challenge motivates our three main
contributions: 
the introduction of a contrastive loss,
a pretrained deep speech representation 
and a dedicated brain decoder





Model• Contrastive loss
We opted for a contrastive objective and thus replaced the regression loss with the 
‘CLIP’ loss (originally for Contrastive Language-Image Pre-Training), which was originally 
designed to match latent representations in two modalities, text and images.
Unlike the regression objective, this contrastive loss leads the model to find a 
combination of features that maximally discriminates samples in the batch.

Let X be a brain recording segment and 𝑌 ∈ 𝑅𝐹×𝑇the latent representation of its 
corresponding sound (also known as ‘positive sample’).
We sample N − 1 negative samples ത𝑌𝑗∈{1,2,…,𝑁−1} over our dataset and we add the 

positive sample as ത𝑌𝑁 = 𝑌 .
We want our model to predict the probabilities ∀j ∈ {1,…,N}, 𝑃𝑗 = 𝑃( ത𝑌𝑗 = 𝑌). We thus 

train a model 𝑓𝑐𝑙𝑖𝑝 mapping the brain activity X to a latent representation 𝑍 =

𝑓𝑐𝑙𝑖𝑝 𝑋 ∈ 𝑅𝐹×𝑇 . The estimated probability can then be approximated by the dot 

product of Z and the candidate speech latent representations 𝑌𝑗, followed by a 

softmax:

෠𝑃𝑗 =
𝑒

𝑍, ത𝑌𝑗

σ𝑖=1
𝑁 𝑒 𝑍, ത𝑌𝑖



with 〈⋅, ⋅〉 the inner product over both dimensions of Z and Ŷ. We then train fclip with a 
cross-entropy between 𝑝𝑗and ҧ𝑝𝑗 . Note that for a large enough dataset, we can neglect the 

probability of sampling twice the same segment, so that we have 𝑝𝑗 = 𝐼(𝑗=𝑁), and the cross-

entropy simplifies to

𝐿𝐶𝐿𝐼𝑃 𝑝, Ƹ𝑝 = − log ෠𝑃𝑁 = − 𝑍, 𝑌 + log ෍
𝑖=1

𝑁

𝑒 𝑍, ത𝑌𝑖

• Brain module
For the brain module, we introduce a deep neural network 𝑓𝑐𝑙𝑖𝑝, input with raw MEG and 

EEG times series X and a one-hot encoding of the corresponding participant s, and 
outputs the latent brain representation Z, with the same sample rate as X. This 
architecture consists of (1) a spatial attention layer over the MEG and EEG sensors
followed (2) by a participant-specific 1 × 1 convolution designed to leverage inter-
individual variability, which input to (3) a stack of convolutional blocks. An overview of 
the model is given in the Extended Data Fig. 4e. In the following, given a tensor U, we 
note U(i,…) access to specific entries in the tensor.



• Spatial attention.

The brain data are first remapped onto D1 = 270 channels with a spatial attention layer 
based on the location of the sensors. The three-dimensional sensor locations are first 
projected on a two-dimensional plane obtained with the MNE-Python function find_layout 
45, which uses a device-dependent surface designed to preserve the channel distances.
Their two-dimensional positions are finally normalized to [0, 1]. For each output channel, a 
function over 0,1 2 is learnt, parameterized in the Fourier space. The weights over the 
input sensors are then given by the softmax of the function evaluated at the sensor 
locations. Formally, each input channel 𝑖 has a location 𝑥𝑖 , 𝑦𝑖  and each output channel 𝑗 
is attached a function  𝑎𝑗  over 0, 1 2, parameterized in the Fourier space as 𝑧𝑗 ∈

𝐶𝐾×𝐾 with K = 32 harmonics along each axis, that is

𝑎𝑗 𝑥, 𝑦 = ෍
𝑘=1

𝐾

෍
𝑙=1

𝐾

𝑅𝑒 𝑧𝑗
(𝑘,𝑙)

𝑐𝑜𝑠 2𝜋(𝑘𝑥 + 𝑙𝑦) + 𝐼𝑚 𝑧𝑗
(𝑘,𝑙)

𝑠𝑖𝑛 2𝜋(𝑘𝑥 + 𝑙𝑦)

The output is given by a softmax attention based on the evaluation of 𝑎𝑗  at each input 

position  (𝑥𝑖 , 𝑦𝑖):
∀𝑗 ∈ 1, … , 𝐷1 𝑆𝐴(𝑗)

1

σ𝑖=1
𝐶 𝑒𝑎𝑗(𝑥𝑖,𝑦𝑖)

෍
𝑖=1

𝐶

𝑒𝑎𝑗(𝑥𝑖,𝑦𝑖) 𝑋(𝑖)



with SA the spatial attention. In practice, as 𝑎𝑗  is periodic, we scale down (x, y) to keep a 

margin of 0.1 on each side. We then apply a spatial dropout by sampling a location 

𝑥𝑑𝑟𝑜𝑝, 𝑦𝑑𝑟𝑜𝑝  and removing from the softmax each sensor that is within a distance of 

𝑑𝑑𝑟𝑜𝑝 = 0.2  of the sampled location. 

The initial motivation for spatial attention was to allow for a cross-dataset model to be defined 
in a way that would generalize across a diverse number location and set of sensors. 
Interestingly, we observed this layer to introduce an inductive bias that is beneficial to the 
prediction accuracy (Extended Data Fig. 2). See Extended Data Fig. 4 for a visualization of the 
learnt attention maps over each dataset. We then add a 1 × 1 convolution (that is, with a 
kernel size of 1) without activation and with the same number D1 of output channels.



• Participant layer.
To leverage inter-individual variability, we learn a matrix Ms ∈ ℝD1 ,D1 for each 
participant s ∈ [S] and apply it after the spatial attention layer along the channel 
dimension. This is similar to but more expressive than the participant embedding used by 
ref. 46 for MEG encoding, and follows decade of research on participant alignment

• Residual dilated convolutions. 
We then apply a stack of five blocks of three convolutional layers. For the kth block, 
the first two convolutions are applied with residual skip connections (except for the 
very first one where the number of dimension potentially doesn’t match), outputs D2 
= 320 channels and are followed by batch normalization and a GELU (Gaussian Error 
Linear Unit) activation. 

The two convolutions are also dilated to increase their receptive field, by 2𝑘𝑚𝑜𝑑 5 and

2 2𝑘+1 𝑚𝑜𝑑 5 (with k zero indexed), respectively. The third layer in a block outputs 2𝐷2 
channels and uses a GLU (Gated Linear Unit) activation, which halves the number of 
channels. All convolutions use a kernel size of 3 over the time axis, a stride of 1 and 
sufficient padding to keep the number of time steps constant across layers.



The output of the model is obtained by applying two final 1 × 1 convolutions: first with 2D2 
outputs, followed by a GELU and finally with F channels as output, thus matching the 
dimensionality of speech representations. Given the expected delay between a stimulus 
and its corresponding brain responses, we further shift the input brain signal by 150 ms 
into the future to facilitate the alignment between Y and Z. The impact of this offset is 
considered in the Supplementary Section A.5.

• Speech module

The Mel spectrogram is a low-level representation of speech inspired from the cochlea 
and is thus unlikely to match the rich variety of cortical representations. Consequently, 
we replaced the Mel spectrograms with latent representations of speech. For this, we
propose either to learn these representations end-to-end (‘Deep Mel’ model) or to rely 
on those learnt by an independent self-supervised speech model (wav2vec 2.0; ref. 29).

• End-to-end speech representations with Deep Mel



The ‘Deep Mel’ module uses the same deep convolutional architecture to the brain
module devoid of the participant block, and thus simultaneously learns to extract 
speech and MEG and EEG representations such that they are maximally aligned. By 
definition, and unlike wav2vec 2.0, Deep Mel sees only the audio used in the MEG and 
EEG datasets. As this end-to-end approach proved to be less efficient than its 
pretrained counterpart based on wav2vec 2.0, we will thereafter focus on the latter.

• Pretrained speech representations with wav2vec 2.0.

Wav2vec 2.0 is trained with audio data only to transform the raw waveform with 
convolutional and transformer blocks to predict masked parts of its own latent 
representations. A previous study showed that the resulting model can be efficiently fine-
tuned to achieve state-of-the-art performance in speech recognition. Besides, this model 
effectively encodes a wide variety of linguistic features. In particular, recent
studies have shown that the activations of wav2vec 2.0 linearly map onto those of the brain. 
Consequently, we here test whether this model effectively helps the present decoding task. 
In practice, we use the wav2vec2-large-xlsr-53 (ref. 56), which has been pretrained on 
56,000 hours of speech from 53 different languages.



Datasets
We test our approach on four public datasets, two based on MEG recordings and two 
based on EEG recordings. All datasets and their corresponding studies were approved by 
the relevant ethics committee and are publicly available for fundamental research 
purposes. We provide an overview of the main characteristics of the datasets in Table 1, 
including the number of training and test segments and vocabulary sizes over both splits. 



For all datasets, healthy adult volunteers passively listened to speech sounds (accompanied 
by some memory or comprehension questions to ensure participants were attentive),
while their brain activity was recorded with MEG or EEG. In Schoffelen et al.32, Dutch-
speaking participants listened to decontextualized Dutch sentences and word lists (Dutch 
sentences for which the words are randomly shuffled). The study was approved by the local 
ethics committee (the local Committee on Research Involving Human Subjects
in the Arnhem–Nijmegen region). The data are publicly and freely available after registration 
on the Donders Repository. In Gwilliams et al. , English-speaking participants listened to four 
fictional stories from the Masc corpus in two identical sessions of 1 hour. The study
was approved by the institutional review board ethics committee of New York University Abu 
Dhabi. In Broderick et al. , English-speaking participants listened to extracts of The Old Man 
and the Sea. The study was approved by the ethics committees of the School of Psychology 
at Trinity College Dublin and the Health Sciences Faculty at Trinity College Dublin. In Brennan 
and Hale, English-speaking participants listened to a chapter of Alice in Wonderland. See 
Supplementary Section A.1 for more details. The study was approved by the University of 
Michigan Health Sciences and Behavioral Sciences institutional review board 
(HUM00081060).
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