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BRAINLM:
A FOUNDATION MODEL FOR BRAIN ACTIVITY RECORDINGS

• Brain LanguageModel (BrainLM), a foundation model for brain activity dynamic 
trained on 6,700 hours of fMRI recordings. Utilizing self-supervised masked-prediction 
training

• BrainLM demonstrates proficiency in both fine-tuning and zero-shot inference tasks

• Fine-tuning allows for the prediction of clinical variables and future brain states.

• In zero-shot inference, the model identifies functional networks and generates 
interpretable latent representations of neural activity.

• a novel prompting technique, allowing BrainLM to function as an in silico 
simulator of brain activity responses to perturbations



• Foundation models represent a new paradigm in artificial intelligence, shifting from 
narrow, task-specific training to more general and adaptable models

• the foundation model approach trains versatile models on broad data at scale, 
enabling a wide range of downstream capabilities via transfer learning.



The foundation model approach trains versatile 
models on broad data at scale, enabling a wide 
range of downstream capabilities via transfer 
learning.

After pretraining, BrainLM supports diverse downstream applications 
via fine-tuning and zero-shot inference. We demonstrate BrainLM’s 
capabilities on key tasks including prediction of future brain states, 
decoding cognitive variables, discovery of functional networks, and in 
silico perturbation analysis.
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• Decoding visual stimuli from brain recordings aims to deepen our understanding of 
the human visual system and build a solid foundation for bridging human and 
computer vision through the Brain-Computer Interface (Next Time)

• MinD-Vis: Sparse Masked Brain Modeling with Double-Conditioned 
Latent Diffusion Model for Human Vision Decoding.

• Firstly, we learn an effective self-supervised representation of fMRI data using mask 
modeling

• Then by augmenting a latent diffusion model with double-conditioning for 
Human Vision Decoding 

Begin: Most materials come from the above  first paper.



• Human perception and prior knowledge are deeply intertwined in one’s mind

• Our perception of the world is determined not only by objective stimuli properties 
but also by our experiences, forming complex brain activities underlying our 
perception.



Figure 2. Individual Differences in Regions Responding to Visual
Stimuli. Masks of the regions of interest activating during the same
visual task differ in location and size across subjects. The primary visual
cortex at the left (red) and the right (orange) hemisphere are shown.

aim to learn representations from a large-scale dataset with rich demographic 
compositions and relax the direct generation fromfMRI to conditional synthesis 
allowing for sampling variance under the same semantic category



Figure 3. MinD-Vis. Stage A(left): Pre-train on fMRI with SC-MBM. We patchify, randomlymask the fMRI, and then tokenize them
to  large embeddings. We train an autoencoder (EMBM anDMBM) to recover the masked patches. Stage B (right): Integration with 
the LDMthrough double conditioning. We project the fMRI latent (LfMRI) through two paths to the LDMconditioning space with 
a latent dimension projector (PfMRI→Cond). One path connects directly to cross-attention heads in the LDM. Another path adds
 the fMRI latent to time embeddings. The LDMoperates on a low-dimensional, compressed version of the original image 
(i.e. image latent), however, the original image is used in this figure for illustrations.



The only spacetime-specific inductive bias is on embedding the patches and their 
positions; all other components are agnostic to the spacetime nature of the problem. 

In particular, our encoder and decoder are both vanilla Vision Transformers [18] with no 
factorization or hierarchy, and our random mask sampling is agnostic to the spacetime 
structures

predicts pixel values
masking ratio (i.e., percentage 
of removed tokens)



Stage A: Sparse-Coded MBM (SC-MBM)

Mask ratio 0.75; 4500 voxels

fMRI data can still be recovered even if a large portion is masked



Experiments
• Datasets

Three public datasets were used in this study:
Human Connectome Project (HCP) 1200 Subject Release [55];
Generic Object Decoding Dataset (GOD) [21]; and Brain,
Object, Landscape Dataset (BOLD5000) [5].
Our upstream pre-training dataset comprised fMRI data from HCP and GOD.
Combining these two, we obtained 136,000 fMRI segments
from 340 hours of fMRI scan, which is, by far, the largest
fMRI pre-training dataset in the fMRI-image decoding task.

While the GOD is an fMRI-image paired dataset designed for fMRI-based decoding. The 
pairs in GOD were used for finetuning in our main analysis. The GOD consists of 1250 
different images from 200 distinct classes, in which 1200 images were used as the training 
set, and the remaining 50 images were used as the testing set. The training set and testing 
set have no overlapping classes.
BOLD5000 dataset was used as the validation dataset in our study. It consists of 5254 fMRI-
image pairs from 4916 distinct images, 113 images of which are used for testing. This is the  
first time that the BOLD5000 is used for fMRI decoding tasks.



Implementation
The fMRI pre-training model is similar to ViT-Large [10] with a 1D patch embedder. 
We used a patch size of 16, embedding dimension of 1024, encoder depth of 24, and   mask
ratio of 0.75 as our Full model setting with an ImageNet class-conditioned pre-trained LDM

Evaluation Metric
way Classification Accuracy

for multiple trials, top-1 and top-5 classification accuracies were calculated in n−1 randomly selected 
classes plus the correct one

 inception distance (FID) 
The FID [19] is a commonly used metric to assess image generation quality. In our experiments, we 
measured the FID between ground-truth images and generated images in the testing set.



Results



our method generated plausible details such as water and waves in the first and second images

The image quality is also reflected by the FID, wherewe achieved 1.67 with our best samples, while 
Ozcelik et al. and others achieved 2.36











BRAINLM: DATA
• the UK Biobank (UKB) 

task-based and resting-state functional MRI (fMRI) recordings plus medical records 
from over 40,000 subjects aged 40-69 years old. recordings were acquired on a 
Siemens 3T scanner at 0.735s temporal resolution

• the Human Connectome Project (HCP)

1,002 high-quality fMRI recordings from healthy adults scanned at 0.72s resolution

• Our model was trained on 80% of the UKB dataset (61,000 recordings) 
and evaluated on the held-out 20% and the full HCP dataset.

All recordings underwent standard preprocessing including motion correction, 
normalization, temporal filtering, and ICA denoising to prepare the data

• Preprocessing

To extract parcel-wise time series, we parcellated the brain into 424 regions using the 
AAL-424 atlas [26]. This yielded 424-dimensional scan sequences sampled at 1 Hz.



Previous Method
Cui H et al. 2023. Brain Network Analysis with Graph Neural Network

Pre-training and Fine-tuning Transformers for fMRI Prediction Tasks 

the source code o BrainGB at https://github.com/HennyJie/BrainGB

Code: https://github.com/GonyRosenman/TFF.

Community-Aware Transformer for Autism Prediction in fMRI Connectome



PTGB: Pre-Train Graph Neural Networks for Brain Network Analysis

The full implementation of this work is publicly available at https://github.com/ 
Owen-Yang-18/BrainNN-PreTrain.

• Three real-world brain network datasets: 

1) the Bipolar Disorder (BP) dataset, 

2) the Human Immunodeciency Virus Infection (HIV) dataset, 

3) the Parkinson's Progression Markers Initiative (PPMI) dataset

while the large-scale PPMI dataset is publicly available for authorized users

https://www.ppmi-info.org/

• Data preprocessing pipelines provided by the opensource BrainGB platform

https://braingb.us/

https://github.com/


• Our work is most closely related to recent efforts to apply masked 
autoencoders for unsupervised pretraining on fMRI data [13, 14] or other 
neural recording modalities, to learn substantially more powerful 
encodings of spatiotemporal fMRI patterns.

• BrainLM is the first model of its scale designed following the 
foundation model paradigm - pretrained on iverse unlabeled data and 
adaptable to various downstream applications via transfer learning. 

• The code, model weights and training hyperparameters will 
be made publicly available



Overview of the BrainLM framework. The model was pretrained on 6,700 hours of fMRI recordings
from 77,298 subjects via spatiotemporal masking and reconstruction. After pretraining, BrainLM supports diverse
capabilities through fine-tuning and zero-shot inference. Fine-tuning tasks demonstrate prediction of future brain
states and clinical variables from recordings. Zero-shot applications include inferring functional brain networks
from attention weights and using a novel prompting technique to simulate perturbation responses in silico. This
highlights BrainLM’s versatility as a foundationmodel for fMRI analysis.



BrainLMarchitecture and training 
procedure. A) The fMRI recordings
are compressed into 424 
Dimensions (parcels)

The recordings are randomly 
trimmed to 200 time points. For
 each parcel, the temporal signal 
is split into patches of 20 time 
points each (blue dashed boxes).

The resulting 4240 patches
 are converted into tokens
 via a learnable linear
 projection.

Fromthe total number of tokens (blue), a subset is masked (red), either randomly or at future timepoints. We then add the 
learnable spatial and temporal embeddings to each token. These visible tokens (blue) are then processed by a series of 
Transformer blocks (Encoder). The input to the Decoder is the full set of tokens, consisting of encoded visible tokens (green) 
and masked tokens (red). The Decoder also consists of Transformer blocks and ultimately projects the tokens back to data 
space. Finally, we compute the reconstruction loss between the prediction (purple) and the original input data (blue).



Training Procedure
• For each fMRI recording, we sampled random200-timestep subsequences. The 

parcel time series were divided into segments of 20 timesteps, yielding 10 
segments per subsequence. These were embedded into a 512-dimensional space 
and masked with a ratio of 20%, 50%, or 75%.

The unmasked segments were encoded via a Transformer encoder with 4 self-attention 
layers and 4 heads. This was decoded by a 2-layer Transformer to reconstruct all 
segments. We trained with batch size 512 and the Adam optimizer for 100 epochs, 
minimizing themean squared error between original and predicted embeddings

After pretraining on all sequences, the encoder can extract informative features capturing 
spatiotemporal brain activity patterns. We leverage the pre-trained encoder for 
downstream prediction and interpretation tasks.



Clinical Variable Prediction

Pretrained EncoderParcel Time Series MLP
Clinical 
Variable

anxiety disorder scores
Age
Neuroticism score
disease

For age, we normalize by simply Z-scoring the Age values 
for all patients to a mean of 0 and unit variance.

For Neuroticism scores, we do min-max scaling to bring the 
distribution of scores into the range [0,1].
For Post Traumatic Stress Disorder (PCL) and General Anxiety Disorder (GAD7) 
scores, we first perform a log transformation tomake the values less 
exponentially distributed, and then performmix-max scaling to range.



In Silico Perturbation Simulation



Results



Table 1: Performance comparison of latent space learned through self-supervised pretraining. Shown is the
coefficient of determination (𝑅2) between predicted and ground truth data for masked patches across various
configurations of masking ratio (MR) and training data size. Columns indicate models trained on 1% or 100% of the
data and with 75% or 90% masking. Rows show different inference metrics, validated by masking 20%, 50%, or 
75% on UK Biobank data (UKB) or Human Connectome Project (HCP) data. The top performing model was trained 
on 100% of the data with 75% making.



Model Generalization



• A key advantage of foundation models is their ability to fine-tune on downstream
     tasks using the pretrained representations. 

Prediction of Clinical Variables

• The pretrained encoder was appended with an MLP head and fine-tuned to predict 
age, neuroticism, PTSD, and anxiety disorder scores. fine-tuning used a held-out 
subset of UKB subjects.

• 1) SVMs trained on raw fMRI data, and 2) SVMs trained on BrainLM’s pretrained 
embeddings. Across all variables, (3) the fine-tuned BrainLM model

(1)
(2)
(3)



Prediction of Future Brain States

Foundation Model
𝒇𝜽(. , . )

𝑋0, 𝑋1, … , 𝑋𝑡+ℎ

𝑌𝑡+1, … , 𝑌𝑡+ℎ
𝑌0, 𝑌1… , 𝑌𝑡

𝑌𝑡+1, … , 𝑌𝑡+ℎ = 𝑓𝜃(𝑌0, 𝑌1… , 𝑌𝑡, 𝑋0, 𝑋1, … , 𝑋𝑡+ℎ) 

TimeGPT
Code: https://github.com/Spiderpig86/TimeGPT#-images

• To evaluate whether BrainLM can capture spatiotemporal dynamics, we assessed 
its performance in extrapolating o future brain states

• During fine-tuning, BrainLM was given 180 timestep sequences and trained to 
forecast the subsequent 20 timesteps. We compared against baseline models 
including LSTMs, ODEnets, and a non-pretrained version of BrainLM



Prediction of Future Brain States

The time points for which BrainLMhas significantly (p < 0.05) lower error than the other 
methods are identified with "*".



Table 3: Quantitative evaluation of extrapolation performance. Models were tasked 
with forecasting parcel activity 40 timesteps beyond observed data from the UKB 
dataset. BrainLM shows the best performance across all metrics: higher (R2) and 
Pearson correlation coefficients (R), and lower mean squared error (MSE) between 
predicted and true future states.



Interpretability via Attention Analysis

Test Hypothesis (?)



Interpretability via Attention Analysis



In silico Perturbation Analysis Reveals Functional Connectivity

In silico perturbation of resting state to match task-based recordings reveals functional changes. The
average magnitude of optimized perturbations to make resting state CLS tokens match target task CLS tokens. 
We find that the region with the largest predicted perturbation is the visual cortex, in line with expected 
functional changes between resting state and task-based recordings.



Functional Network Prediction
We evaluated BrainLM’s ability to segment parcels into intrinsic functional brain networks directly from 
fMRI activity patterns, without any network-based supervision. Parcels were categorized into 7 functional 
groups as defined in prior cortical parcellation work [cite]. The groups corresponded to visual, 
somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default mode networks. On a 
held-out set of 1,000 UKB recordings, we compared different methods for classifying parcels into these 7 
networks:

The classifiers were trained on 80% of the parcels from each recording and evaluated on 
the remaining 20%.



Projects

MinD-Vis: Sparse Masked Brain Modeling with Double-Conditioned Latent Diffusion 
Model for Human Vision Decoding  .

• Data Sets: 

Human Connectome Project (HCP) 1200 Subject Release 
[55];
Generic Object Decoding Dataset (GOD) [21]; and Brain,
Object, Landscape Dataset (BOLD5000) 

PTGB: Pre-Train Graph Neural Networks for Brain Network Analysis
Three real-world brain network datasets: 
the Bipolar Disorder (BP) dataset, 
2) the Human Immunodeciency Virus Infection (HIV) dataset, 
3) the Parkinson's Progression Markers Initiative (PPMI) dataset

the UK Biobank (UKB)

Above Pretraining

while the large-scale PPMI dataset  is publicly available for authorized users
https://www.ppmi-info.org/



Repeat Analysis in Brain LM
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