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Outlines

Identify Pathogenic Missense Mutations and Estimate Their Effects

* Ildentify Pathogenic Non-coding Variants and Estimate Their Effects

* Incorporate Association and Causal Analysis into Fundation Models
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(a) Single nucleotide variations (SNVs) can occur in the coding or in the non-coding region. SNVs in the coding
region can be synonymous if no amino acid changes are produced, non-synonymous if the single nucleotide
substitution induces changes in the protein sequence. Usually, two types of non-synonymous changes can be
described: missense mutation, that produces an amino acid change in the protein (SAV) and nonsense mutation
which produces a truncated or a longer protein. (b) A single nucleotide substitution can lead to a single amino
acid change generating a protein variant with structural and/or functional alterations as shown in the substitution
of the residue Asp183 with a His in the human frataxin protein.
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AlphaMissense

Accurate proteome-wide missense variant effect prediction with AlphaMissense
JUN CHENG et al.

SCIENCE, 19 Sep 2023, Vol 381, Issue 6664, DOI: 10.1126/science.adg7492



Input

AlphaMissense takes as input a missense variant
and predicts its pathogenicity. We fine-tuned
AlphaFold on human and primate variant

population frequency data and calibrated the
| confidence on known disease variants.

Reference: - DNA
MDVVAMVNQTVATMIS ------- Protein
Missense CGG ----------mmmmmmmoe DNA
variant: MDVVAMVNRTVATMIS -------------- Protein
| |
AlphaMissense V
Protein language ¢ oo ;
@ Structure context modeling @ Training variants

Benign | Pathogenic

AlphaMissense predicts the probability of a

missense variant being pathogenic and classifies
it as either likely benign, likely pathogenic, or
uncertain. We provide predictions for all possible
human missense variants as a resource for the
community

Output
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AlphaMissense

pathogenicity:

For all 7IM possible
missense variants in

Uncertain the human proteome:
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89% of all 71 million possible
missense variants as either likely
pathogenic or likely benign.

By contrast, only 0.1% have been
confirmed by

human exberts.

32%
likely



Examples of Modeling of Missense Mutations on 3D Protein Structures Wild-type
residues are marked in blue; de novo mutations are indicated as red globes or lines



AlphaMissense Procedures

* Goal: AlphaMissense takes as input an amino acid sequence and predicts the
pathogenicity of all possible single amino acid changes at a given position in the
sequence. AlphaMissense is trained in two stages.

* In the first stage, the network is trained like AF to perform single-chain structure
prediction (AF pretraining) along with protein language modeling by predicting the
identity of the amino acids masked at random positions in the MSA.

After pretraining, the masked language modeling head can already be used for variant
effect prediction by computing the loglikelihood ratio between the reference and
alternative amino acid probabilities.

* In the second stage (Fig. 1A), the model is fine-tuned on human proteins with an
additional variant pathogenicity classification objective defined for a variant sequence
presented in the second row of the MSA (Fig. 1A). For the training set, we assign benign
labels to variants frequently observed in the human and primate populations, and
pathogenic labels to variants absent from human and primate populations, as is done in
Primate Al (12) (Fig. 1B; see methods). We stop training the model once it starts to overfit
on the validation set (2526 ClinVar variants with an equal number of pathogenic and
benign variants per gene; see methods).
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Overview of AlphaMissense. (A) AlphaMissense architecture. The model inputs consist of the
reference protein sequence [cropped to length (L) = 256 residues], a set of variants sampled from the
training set for the same sequence (up to N = 50 variants), and multiple sequence alignments (MSAs,
up to Nall = 2048). Inference is performed for one variant at a time (N = 1). The reference sequence is
repeated in the second row of the MSA with all sampled variant positions masked (see methods). As
In AlphaFold, the model constructs the pair representation (i.e., encodes information about two-way
Interactions between residues) from the reference sequence (embedding size Kpair), and the MSA
representation from the masked MSA (embedding size Kmsa). The MSA and pair representations are
processed by a stack of Evoformer layers with recycling. Finally, the model predicts the structure of
the reference sequence and the pathogenicity score Si* for the variant, which is derived from the
masked residue prediction head as the log-likelinood difference between residue a relative to the
reference residue at position i (see methods). (B) The pathogenicity score is fine-tuned as a binary
classification of variants as benign (observed or frequent missense variants in human or primate
populations) or pathogenic (unobserved human missense variants). We split the benign variants into
clusters by their minor allele frequency (MAF) and introduce weights in the loss function that reduce
the contribution of rare variants. For each observed variant in the benign set, we sample a missense
variant from the pathogenic set and assign it the same loss weight as for the benign variant (see
methods). (C) We evaluated AlphaMissense on a diverse set of benchmark datasets, including
annotated missense variants in ClinVar (30), de novo disease variants (54), and MAVE data collected
iIn ProteinGym (19).
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curated classification benchmarks.

Benchmarks are evaluated by area under the receiver
operator curve (auROC). Error bars show the 95%
confidence interval of 1000 bootstrap resamples (see
methods). A few manually chosen methods are colored
to illustrate the relative position on different benchmarks

(A) Performance on classification of ClinVar variants (9462
pathogenic and 9462 benign variants from 999 proteins)
(D)The histograms show the distribution of scores among

. pathogenic (red) and benign (blue) variants

(E) Precision is defined as the fraction of true predictions in

’t’*? both pathogenic and benign class prediction. The resolved
fractions are computed with ClinVar test set variants from

w4 proteins scored by EVE (dark lines, all)

)
»*

(F) Variants predicted as likely pathogenic are shown in
red, variant predicted as likely benign are shown in blue,
.., and ambiguous variants are shown in gray



Ablating components of AlphaMissense reveals key drivers of performance

* three types of components:
structure prediction, variant sampling, and training data.

 Overall, these results emphasize the importance of both training stages:
pretraining on a large database of structures and fine-tuning directly for
the target application
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AlphaMissense predictions as a community resource
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AlphaMissense

71 million missense variant predictions.

The second resource is gene-level
AlphaMissense pathogenicity predictions,
defined as the average pathogenicity over
all possible missense variants in a gene

The third is the expanded dataset of
all 216 million possible single amino
acid substitutions across the 19,233
canonical human proteins.

Finally, we provide predictions for all
possible missense variants and amino
acid substitutions across 60,000
alternative transcript isoforms for
future research and evaluation of
isoform-specific effects.



An RNA foundation model enables discovery of
disease mechanisms and candidate therapeutics

Albi Celaj et al. September 13, 2023. bioRxiv preprint doi:
https://doi.org/10.1101/2023.09.20.558508
Deep Genomics, Brendan J. Frey
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https://doi.org/10.1101/2023.09.20.558508

a foundation model for RNA biology, “BigRNA”

* trained on thousands of genome-matched datasets to predict
tissue-specific RNA expression,
splicing, microRNA sites, and
RNA binding protein specificity
from DNA sequence.

* BIigRNA can identify pathogenic non-coding variant effects across diverse mechanisms

* BigRNA accurately predicted the effects of steric blocking oligonucleotides (SBOs) on
increasing the expression

* Building foundation models
that can predict gene expression from DNA sequence



* BigRNA learns from paired genotype and 128bp resolution RNA expression

* downstream tasks
predicting RNA-binding protein (RBP) specificity and
microRNA binding sites.

« BigRNA directly models RNA-seq data, not overall expression level
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RNA-seq model training

downloaded and aligned RNA-seq
data from the GTEx consortium 5
V6 release, processing all available
data from the set of 70 individuals

Each RNA-seq sample was processe
into two data tracks:

Coverage and junction,

where the junction track contains
a subset of read counts at splice
junctions.

we applied 128bp-window
average-pooling on coverage tracks
And 128bp-window sum-pooling
on junction tracks
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a. BigRNA was trained on the genomes
of 70 individuals, to predict a total of
2,956 RNA-seq datasets over 51
tissues, plus 693 datasets
corresponding to RNA binding protein
and microRNA sites.

b. Distribution of correlations
between predicted and measured
RNA-seq coverage in exonic regions
for genes held-out during training

(averaged across individuals)
c. Correlation between predicted and

measured RNA-seq coverage for the
hypothalamus samples

d. Predicted versus measured
coverage for SLC7A8, averaged
Across hypothalamus samples for
all individuals

g. Comparison of BigRNA and a previously
published method, DeepRiPe, for
predicting the binding sites of 98 RNA
Binding proteins across 2 cell lines.



While some accurate methods exist for
predicting the pathogenic impact of

rare missense variants , non-coding variants,
such as those located within the 3' and

5' untranslated regions (UTRs) of genes, remain
difficult to interpret.

To address this gap, authors evaluate BigRNA's
ability to predict the impact of a curated set

of pathogenic or likely pathogenic (P/LP) UTR
variants from ClinVar



Predicting the effects of variants on
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Classification performance:

BigRNA Predictions on a pathogenic variant in NAA10

e. BigRNA predictions for variants of varying clinical
significance in HBB . The dashed line represents the
threshold of classifying P/LP from putative benign
variants at a 5% FPR in the 3’ UTR (y = 0.0341). The
two highest scoring VUS variants in this gene are
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impact PON1 expression.
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Predicting the effects of variants on splicing and intron retention

An important subset of pathogenic variants affect splicing,
such as those which cause skipping of an exon. These variants
often occur in coding regions, and may be incorrectly classified
as benign mutations based on their amino acid substitutions,
despite their pathogenic splicing effects.
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a. BigRNA performance on classifying exonic

variants that result in exon skipping by at least
50%, from exonic variants that do not cause
skipping, both obtained from MaPSy.

b. BigRNA predicts that the c.468+7A>G variant
will result in increased TDP-43 binding and

skipping of ACADM exon 6.
c. The ATP7B VUS ¢.3243+5G>A is predicted by

BigRNA to cause in-frame skipping of exon 14.
This results in reduced levels of functional
ATP7B protein, leading to copper buildup in the
cell. Right: An RT-PCR in HepG2 cells edited to
be homozygous for 3243+5G>A confirms the
expected fragment from exon skipping.

d. BigRNA performance on classifying variants

that cause intron retention (n = 25) from a set

of matched variants that do not impact splicing

(n =63).
f. Top: BigRNA coverage predictions of the
c.5714+5G>A variant in ABCA4 . Bottom:

RNA-seq of wildtype WERI cells and WERI cells
edited to be homozygous for the variant confir

both exon skippine and intron retention effects.



Designing splice-switching and expression-increase molecules
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a. Mechanism of action of the splice-switching oligonucleotide
Nusinersen, an approved treatment for spinal

muscular atrophy (SMA). BigRNA predictions are shown for the
exon-restoring effects of all 18-mer SBOs within 200 bp of
SMN2 exon 7. The blue bar shows the position of Nusinersen.
Predictions were truncated at zero for the plot

b. Spearman correlation between experimentally

observed exon-inclusion levels and predictions generated by
BigRNA and SpliceAl . A negative correlation for NFIX exon 7
versus SpliceAl (r=-0.13) was truncated to zero

c. BigRNA predictions of SBO effects on ATP7B exon 6
inclusion. 55 SBOs were screened by gPCR to measure total
ATP7B expression relative to control (fold change), and the
Spearman correlation was computed between the BigRNA
predictions and observed fold changes.

d. BigRNA predictions for wildtype, Met645Arg (c.1934T>G)
variant, and Met645Arg variant with treatment

(lead SBO targeting ATP7B exon 6). The junction count tracks
pertaining to individual samples of the liver tissue are average
for plotting
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e. Proportion of ultra-rare pathogenic variants
associated with AR disorders with BigRNA exon
skipping predictions above the 1% and 5% FPR
thresholds. Intronic (>8bp from splice site), splice
region (<8bp from splice site excluding the

core dinucleotides), tolerated missense (SIFT score
> 0.05) and synonymous variants are

shown.

f. BigRNA predictions for wildtype, c.2481-12A>G
variant and the variant with treatment
(lead SBO targeting MYO1E exon 23).

g. BigRNA predicts expression increase SBOs in PON1 .
BigRNA inhibitory scores are plotted by region of the
gene. The transcript structure is shown

under the scores, and the locations of the 10 dose-
response hits are shown with blue bars. The
distribution of BigRNA inhibitory scores for the 10
dose-response hits is significantly different

from the distribution for other length-matched SBOs
targeting PON1

h. BigRNA scores of

screening hits compared to background of all possible
SBOs of same length for PON1, ATP7B,

DRRTY ~AnA CEDRDDINICAT



Next is Association and Causation Analysis

Tools

 Hypothesis Testing in Al

e (Causal Inference



\ 4

Pretrained Encoder




Cases — Control Studies
* Null Hypothesis:

H,: There is no difference in fitness between cases and controls. H,: v4 = v¢
H,: Presence of difference in fitness between cases and controls. H,: V4 = V¢

e Notations and Fithess in Cases and Controls.

n,: Number of cases
nc: Number of controls
[(x}): fitness of the individual n in cases at the i*" position in a gene with a

genotype x; .
[(y): fitness of the individual n in controls at the i*" position in a gene with a
genotype y; .



Association Tests

Single Marker

- —\2

_ _ 1 _ 1

= tanc (la— L) lA~1v(vA,—62>,lc~N(VC,—62) (3)
S Ny + Ne 6'2 ny Nce

Distribution
Under the null hypothesis Tg~x?,

Define

Embedding vector of genotype of individual n, in cases

Embedding vector of genotype of individual n. in Controls



Semantic Embedding and Mutation Effect
« Test Statistic
Single Marker

* Null Hypothesis Ho: pa = pc

H,: There is no difference in embedding of genotype in position i between cases and controls

H,: Presence of difference in embedding of genotype in position i between cases and controls

Embedding vector of genotypes of individual n in controls

— —I\T~ 4 ;—: — . 1 . 1
Ty = (Zzlfl - ZlC) At (Zf4 - ZlC) Zy~N (HA;_Z>;Z£‘~N (Hc;—2>
~— ny nc

Embedding vector of genotype of individual n in cases

Under the null hypothesis, TSNX%H)



_ _ 1 1 : -
Var(ZA—ZC)=A=<—+—)Z Genomic Regions

ng ng
- 1 1
A=|—+—]5§,
ng nNg

1 ng _ _ _ nc  _ _ _ _
5= ny + Ne — 2 [zn=1(ZAn B ZA)(ZAn B ZA)T + zn=1(zcn - ZC)(ch B ZC)T

* Null Hypothesis

H,: There is no difference in the total embedding of the genotype in a genomic region
between cases and controls.

H,: Presence of difference in the total embeddings of the genotypes in a genomic region
between cases and controls.

Define test statistics

_ — T~ 4 ,— _ _ 1 _ 1
Tm = (Z, - ZC)TA_l(ZA —Z¢) Zp~N (.UA,n—ZA> ,Zc"’N(Hc»n—Zc)
A C

%4 = Cov(Zhn, Zhn) 2c = Cov(ZE,, ZEn)

Under the null hypothesis, Tm~)(%H)



Causation Test



Pair-wise causal analysis (GAN)

X (A segment of sequence, gene, risk factor)

/

Language Model

\ Transformer

Two Sample Test

Discriminator >

Real or Fake?

Dy_y=1{hi,¥;=G(Z,h}),i=1,..,n}

D,={nlY;,i=1,..,n}

D={(Yy,1),...(Y,1)]Ul(Yy,0),.., (Y, 0]}
={(z1, 1), ., (220 L20)}

(=11 Y
0 Y,

1
Tcix—oyy = — w;
( ) nte (hi;li)EDte

T.x_y~0.5X-Y
we=1I(f(h) >3) =1 &P

X causes'Y.




Generalist Model for mutation, gene expression and Image

Missense Mutation Prediction
SNV
nonsense mutation
Copy Number Variation Mutaformer Association
Insertion Variation |
Duplication GJne
Noncoding Mutation Causation




Apply Causal Methods to Foundation Model

ARTIFICIAL
INTELLIGENCE AND
CAUSAL INFERENCE

Momiao Xiong

@(R( Presy
ALHMAPVAN & HA rOON
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