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Outlines

•  Identify Pathogenic Missense Mutations and Estimate Their Effects

• Identify Pathogenic Non-coding Variants and Estimate Their Effects

• Incorporate Association and Causal Analysis into Fundation Models



(a) Single nucleotide variations (SNVs) can occur in the coding or in the non-coding region. SNVs in the coding 

region can be synonymous if no amino acid changes are produced, non-synonymous if the single nucleotide 

substitution induces changes in the protein sequence. Usually, two types of non-synonymous changes can be 

described: missense mutation, that produces an amino acid change in the protein (SAV) and nonsense mutation 

which produces a truncated or a longer protein. (b) A single nucleotide substitution can lead to a single amino 

acid change generating a protein variant with structural and/or functional alterations as shown in the substitution 

of the residue Asp183 with a His in the human frataxin protein.

single nucleotide variations (SNVs)

either in coding or 
in non-coding regions

copy number, insertions,
 deletions, duplications, 
and rearrangements

Missense Mutation



Non-coding driver mutations in human cancer. Nature Reviews Cancer volume 21, pages500–509 (2021) 

Non-coding Mutations

Beyond the exome: the role of non-coding
 somatic mutations in cancer.

Annals of Oncology .Volume 27,  Pages 240-248



AlphaMissense

Accurate proteome-wide missense variant effect prediction with AlphaMissense

JUN CHENG et al. 

SCIENCE, 19 Sep 2023, Vol 381, Issue 6664, DOI: 10.1126/science.adg7492



AlphaMissense takes as input a missense variant 
and predicts its pathogenicity. We fine-tuned 
AlphaFold on human and primate variant 
population frequency data and calibrated the
confidence on known disease variants.

 AlphaMissense predicts the probability of a 
missense variant being pathogenic and classifies 
it as either likely benign, likely pathogenic, or 
uncertain. We provide predictions for all possible 
human missense variants as a resource for the 
community

89% of all 71 million possible 
missense variants  as either likely
 pathogenic or likely benign. 
By contrast, only 0.1% have been 
confirmed by
 human experts.



Examples of Modeling of Missense Mutations  on 3D Protein Structures Wild-type 
residues are marked in blue; de novo mutations are indicated  as red globes or lines 



• Goal: AlphaMissense takes as input an amino acid sequence and predicts the 
pathogenicity of all possible single amino acid changes at a given position in the 
sequence. AlphaMissense is trained in two stages. 

AlphaMissense Procedures 

• In the first stage, the network is trained like AF to perform single-chain structure 
prediction (AF pretraining) along with protein language modeling by predicting the 
identity of the amino acids masked at random positions in the MSA.
After pretraining, the masked language modeling head can already be used for variant 
effect prediction by computing the loglikelihood ratio between the reference and 
alternative amino acid probabilities.

• In the second stage (Fig. 1A), the model is fine-tuned on human proteins with an 
additional variant pathogenicity classification objective defined for a variant sequence 
presented in the second row of the MSA (Fig. 1A). For the training set, we assign benign 
labels to variants frequently observed in the human and primate populations, and 
pathogenic labels to variants absent from human and primate populations, as is done in 
Primate AI (12) (Fig. 1B; see methods). We stop training the model once it starts to overfit 
on the validation set (2526 ClinVar variants with an equal number of pathogenic and 
benign variants per gene; see methods).





Overview of AlphaMissense. (A) AlphaMissense architecture. The model inputs consist of the 

reference protein sequence [cropped to length (L) = 256 residues], a set of variants sampled from the 

training set for the same sequence (up to N = 50 variants), and multiple sequence alignments (MSAs, 

up to Nall = 2048). Inference is performed for one variant at a time (N = 1). The reference sequence is 

repeated in the second row of the MSA with all sampled variant positions masked (see methods). As 

in AlphaFold, the model constructs the pair representation (i.e., encodes information about two-way 

interactions between residues) from the reference sequence (embedding size Kpair), and the MSA 

representation from the masked MSA (embedding size Kmsa). The MSA and pair representations are 

processed by a stack of Evoformer layers with recycling. Finally, the model predicts the structure of 

the reference sequence and the pathogenicity score 𝑆𝑖
𝑎 for the variant, which is derived from the 

masked residue prediction head as the log-likelihood difference between residue a relative to the 

reference residue at position i (see methods). (B) The pathogenicity score is fine-tuned as a binary 

classification of variants as benign (observed or frequent missense variants in human or primate 

populations) or pathogenic (unobserved human missense variants). We split the benign variants into 

clusters by their minor allele frequency (MAF) and introduce weights in the loss function that reduce 

the contribution of rare variants. For each observed variant in the benign set, we sample a missense 

variant from the pathogenic set and assign it the same loss weight as for the benign variant (see 

methods). (C) We evaluated AlphaMissense on a diverse set of benchmark datasets, including 

annotated missense variants in ClinVar (30), de novo disease variants (54), and MAVE data collected 

in ProteinGym (19).



Performance of AlphaMissense on clinically 

curated classification benchmarks. 
Benchmarks are evaluated by area under the receiver 
operator curve (auROC). Error bars show the 95% 
confidence interval of 1000 bootstrap resamples (see 
methods). A few manually chosen methods are colored 
to illustrate the relative position on different benchmarks

(A) Performance on classification of ClinVar variants (9462 
pathogenic and 9462 benign variants from 999 proteins)

(D)The histograms show the distribution of scores among 
pathogenic (red) and benign (blue) variants

(E) Precision is defined as the fraction of true predictions in
both pathogenic and benign class prediction. The resolved 
fractions are computed with ClinVar test set variants from 
proteins scored by EVE (dark lines, all)

(F) Variants predicted as likely pathogenic are shown in 
red, variant predicted as likely benign are shown in blue, 
and ambiguous variants are shown in gray



Ablating components of AlphaMissense reveals key drivers of performance

• three types of components:
structure prediction, variant sampling, and training data.

• Overall, these results emphasize the importance of both training stages: 
pretraining on a large database of structures and fine-tuning directly for 
the target application



AlphaMissense predictions as a community resource

•  71 million missense variant predictions.

• The second resource is gene-level
     AlphaMissense pathogenicity predictions, 
     defined as the average pathogenicity over 
     all possible missense variants in a gene

• The third is the expanded dataset of 
      all 216  million possible single amino 
      acid substitutions across the 19,233 
      canonical human proteins. 

• Finally, we provide predictions for all
      possible missense variants and amino
      acid substitutions across 60,000 
      alternative transcript isoforms for 
      future research and evaluation of
      isoform-specific effects. 



An RNA foundation model enables discovery of 
disease mechanisms and candidate therapeutics
Albi Celaj et al.  September 13, 2023. bioRxiv preprint doi: 
https://doi.org/10.1101/2023.09.20.558508
Deep Genomics, Brendan J. Frey

从英文翻译而来-Brendan John Frey FRSC是一位出生于加拿大的企业家，工程
师和科学家。他是Deep Genomics的创始人兼首席执行官，Vector人工智能研
究所的联合创始人以及多伦多大学工程与医学教授。维基百科（英文)
查看原文说明
学术顾问：杰弗里·辛顿
图书： Graphical Models for Machine Learning and Digital Communication
教育背景：多伦多大学

https://doi.org/10.1101/2023.09.20.558508


a foundation model for RNA biology, “BigRNA” 

• trained on thousands of genome-matched datasets to predict 
tissue-specific RNA expression, 

     splicing, microRNA sites, and 

       RNA binding protein specificity 
     from DNA sequence. 

• BigRNA can identify pathogenic non-coding variant effects across diverse mechanisms

• BigRNA accurately predicted the effects of steric blocking oligonucleotides (SBOs) on 
     increasing the expression

• Building foundation  models 
      that can predict gene expression from DNA sequence



• BigRNA learns from paired genotype and 128bp resolution RNA expression

• downstream tasks
     predicting RNA-binding protein (RBP) specificity and 
     microRNA binding sites.

• BigRNA directly models RNA-seq data, not overall expression level



RNA-seq model training

downloaded and aligned RNA-seq
data from the GTEx consortium 5 
V6 release, processing all available
data from the set of 70 individuals

Each RNA-seq sample was processed
into two data tracks: 
Coverage and junction, 
where the junction track contains
a subset of read counts at splice
junctions.

we applied 128bp-window 
average-pooling on coverage tracks,
And 128bp-window sum-pooling 
on junction tracks



196608bp DNA sequence

896 × 128 = 114688bp

896

Effective gene expression prediction from
 sequence by integrating long-range 
Interactions.

Nature Methods volume 18, 
pages1196–1203 (2021)



a. BigRNA was trained on the genomes
of 70 individuals, to predict a total of
 2,956 RNA-seq datasets over 51 
 tissues, plus 693 datasets 
corresponding to RNA binding protein
 and microRNA sites.

b. Distribution of correlations
 between predicted and measured 
RNA-seq coverage in exonic regions
 for genes held-out during training 
(averaged across individuals)
c. Correlation between predicted and
 measured RNA-seq coverage for the
hypothalamus samples

d. Predicted versus measured 
coverage for SLC7A8 , averaged 
Across hypothalamus samples for 
all individuals

g. Comparison of BigRNA and a previously 
published method, DeepRiPe, for
predicting the binding sites of 98 RNA 
Binding proteins across 2 cell lines.



While some accurate methods exist for 
predicting the pathogenic impact of
rare missense variants , non-coding variants, 
such as those located within the 3' and
5' untranslated regions (UTRs) of genes, remain 
difficult to interpret.

To address this gap, authors evaluate BigRNA’s 
ability to predict the impact of a curated set
of pathogenic or likely pathogenic (P/LP) UTR 
variants from ClinVar



Predicting the effects of variants on 
gene expression

a. Performance of BigRNA on classifying P/LP variants 
from putative benign variants in the 3’ UTR and 5’ UTR

b. RNA-seq coverage predictions for the effects of a 
pathogenic variant in the 3’ UTR of NAA10 
( NM_003491.4), averaged across all individuals and 
all tissue types

c. Top:
BigRNA predictions showing the change in expression 
for  all possible point mutations around the 
polyadenylation site (PAS) of NAA10 . Three variants 
previously identified as impacting the PAS are labeled. 
Bottom: Relationship between the change in
expression predicted by BigRNAfrom ablating regions
 around the PAS relative to the distance from the PAS
 for 200 human poly(A) signal sequences selected from 
PolyASite 2.0.



e. BigRNA predictions for variants of varying clinical 
significance in HBB . The dashed line represents the 
threshold of classifying P/LP from putative benign 
variants at a 5% FPR in the 3’ UTR (y = 0.0341). The
 two highest scoring VUS variants in this gene are
annotated.

f. Top: Comparing BigRNA predicted effects to
GTEx eQTL effect size and results of a luciferase
 reporter assay for four variants suspected to
impact PON1 expression.
 Bottom:
Estimated linkage disequilibrium between
 variants.

g . Performance of BigRNA at distinguishing
fine-mapped expression quantitative trait loci 
(eQTLs) from controls matched by effector gene
(eGene), distance to the transcription start site
 of the eGene, and minor allele frequency



Predicting the effects of variants on splicing and intron retention

An important subset of pathogenic variants affect splicing, 
such as those which cause skipping of an exon. These variants 
often occur in coding regions, and may be incorrectly classified 
as benign mutations based on their amino acid substitutions,
despite their pathogenic splicing effects.



a. BigRNA performance on classifying exonic 
variants that result in exon skipping by at least
50%, from exonic variants that do not cause
skipping, both obtained from MaPSy.
b. BigRNA predicts that the c.468+7A>G variant
 will result in increased TDP-43 binding and
 skipping of ACADM exon 6.

c. The ATP7B VUS c.3243+5G>A is predicted by
BigRNA to cause in-frame skipping of exon 14. 
This results in reduced levels of functional 
ATP7B protein, leading to copper buildup in the
cell. Right: An RT-PCR in HepG2 cells edited to 
be homozygous for 3243+5G>A confirms the
expected fragment from exon skipping.

d. BigRNA performance on classifying variants 
that cause intron retention (n = 25) from a set 
of matched variants that do not impact splicing
 (n = 63).

f. Top: BigRNA coverage predictions of the 
c.5714+5G>A variant in ABCA4 . Bottom: 
RNA-seq of wildtype WERI cells and WERI cells
edited to be homozygous for the variant confir

 both exon skipping and intron retention effects.



Designing splice-switching and expression-increase molecules
a. Mechanism of action of the splice-switching oligonucleotide 
Nusinersen, an approved treatment for spinal
muscular atrophy (SMA). BigRNA predictions are shown for the 
exon-restoring effects of all 18-mer SBOs within 200 bp of 
SMN2 exon 7. The blue bar shows the position of Nusinersen.
Predictions were truncated at zero for the plot

b. Spearman correlation between experimentally
observed exon-inclusion levels and predictions generated by 
BigRNA and SpliceAI . A negative correlation for NFIX exon 7
versus SpliceAI (r=-0.13) was truncated to zero

c. BigRNA predictions of SBO effects on ATP7B exon 6 
inclusion. 55 SBOs were screened by qPCR to measure total 
ATP7B expression relative to control (fold change), and the 
Spearman correlation was computed between the BigRNA 
predictions and observed fold changes.

d. BigRNA predictions for wildtype, Met645Arg (c.1934T>G) 
variant, and Met645Arg variant with treatment
(lead SBO targeting ATP7B exon 6). The junction count tracks 
pertaining to individual samples of the liver tissue are averaged 
for plotting



e. Proportion of ultra-rare pathogenic variants
associated with AR disorders with BigRNA exon 
skipping predictions above the 1% and 5% FPR
thresholds. Intronic (>8bp from splice site), splice 
region (<8bp from splice site excluding the
core dinucleotides), tolerated missense (SIFT score 
> 0.05) and synonymous variants are
shown.

f. BigRNA predictions for wildtype, c.2481-12A>G 
variant and the variant with treatment
(lead SBO targeting MYO1E exon 23).

g. BigRNA predicts expression increase SBOs in PON1 .
BigRNA inhibitory scores are plotted by region of the 
gene. The transcript structure is shown
under the scores, and the locations of the 10 dose-
response hits are shown with blue bars. The
distribution of BigRNA inhibitory scores for the 10 
dose-response hits is significantly different
from the distribution for other length-matched SBOs 
targeting PON1
h. BigRNA scores of
screening hits compared to background of all possible 
SBOs of same length for PON1, ATP7B ,
PRRT2 , and SERPING1 .



• Hypothesis Testing in AI

Next is Association and Causation Analysis

Tools

• Causal Inference



Pretrained EncoderInput MLP
Clinical 
Variable



Cases – Control Studies

• Null Hypothesis:

𝐻0: There is no difference in fitness between cases and controls.

𝐻𝑎: Presence of difference in fitness between cases and controls.  𝑯𝒂:  𝑽𝑨 ≠ 𝑽𝑪

• Notations and Fitness in Cases and Controls.

𝑛𝐴: Number of cases

𝑛𝐶: Number of controls

𝑙 𝑥𝑛
𝑖 : fitness of the individual 𝑛 in cases at the 𝑖𝑡ℎ position in a gene with a 

genotype 𝑥𝑗𝑛

𝑖  . 

𝑙 𝑦𝑛
𝑖 : fitness of the individual 𝑛 in controls at the 𝑖𝑡ℎ position in a gene with a 

genotype 𝑦𝑗𝑛

𝑖 .

𝑯𝟎: 𝑽𝑨 = 𝑽𝑪



• Association Tests

Single Marker

𝑇𝑠 =
𝑛𝐴𝑛𝐶

𝑛𝐴 + 𝑛𝐶

ҧ𝑙𝐴 − ҧ𝑙𝐶
2

ො𝜎2 (3)

Distribution

Under the null hypothesis 𝑻𝒔~𝝌(𝟏)
𝟐

  

Define

ҧ𝑙𝐴~𝑁 𝑉𝐴,
1

𝑛𝐴
ො𝜎2 , ҧ𝑙𝐶~𝑁(𝑉𝐶 ,

1

𝑛𝐶
ො𝜎2) 

Embedding vector of genotype of  individual 𝑛𝐴 in cases 

Embedding vector of genotype of  individual 𝑛𝐶 in Controls 



• Test Statistic

Single Marker

• Null Hypothesis

𝐻0: There is no difference in embedding of genotype in position 𝑖 between cases and controls 

𝐻𝑎: Presence of difference in embedding of genotype in position 𝑖 between cases and controls 

𝑻𝒔 = ഥ𝒁𝑨
𝒊 − ഥ𝒁𝑪

𝒊 𝑻෡𝜦−𝟏 ഥ𝒁𝑨
𝒊 − ഥ𝒁𝑪

𝒊

Under the null hypothesis, 𝑻𝒔~𝝌(𝑯)
𝟐  

𝑯𝟎:  𝝁𝑨 = 𝝁𝑪

ҧ𝑍𝐴
𝑖 ~𝑁 𝜇𝐴,

1

𝑛𝐴
Σ , ҧ𝑍𝐶

𝑖 ~𝑁 𝜇𝐶 ,
1

𝑛𝐶
Σ

Semantic Embedding and Mutation Effect 

Embedding vector of genotype of  individual 𝑛 in cases 

Embedding vector of genotypes of individual 𝑛 in controls 



𝑉𝑎𝑟 ҧ𝑍𝐴 − ҧ𝑍𝐶 = Λ =
1

𝑛𝐴
+

1

𝑛𝐶
Σ

෡Λ =
1

𝑛𝐴
+

1

𝑛𝐶
S,

S =
1

𝑛𝐴 + 𝑛𝐶 − 2
෍

𝑛=1

𝑛𝐴
ҧ𝑍𝐴𝑛 − ҧ𝑍𝐴

ҧ𝑍𝐴𝑛 − ҧ𝑍𝐴
𝑇

+ ෍
𝑛=1

𝑛𝐶
ҧ𝑍𝐶𝑛 − ҧ𝑍𝐶

ҧ𝑍𝐶𝑛 − ҧ𝑍𝐶
𝑇

• Null Hypothesis

𝐻0: There is no difference in the total embedding of the genotype in a genomic region 

between cases and controls. 

𝐻𝑎:  Presence of difference in the total embeddings of the genotypes in a genomic region 
between cases and controls.  

Define test statistics

𝑻𝒎 = ഥ𝒁𝑨 − ഥ𝒁𝑪
𝑻෡𝜦−𝟏 ഥ𝒁𝑨 − ഥ𝒁𝑪

Under the null hypothesis, 𝑻𝒎~𝝌(𝑯)
𝟐  

ҧ𝑍𝐴~𝑁 𝜇𝐴,
1

𝑛𝐴
Σ𝐴 , ҧ𝑍𝐶~𝑁(𝜇𝐶 ,

1

𝑛𝐶
Σ𝐶)

Σ𝐴 = 𝐶𝑜𝑣 𝑍𝐴𝑛
𝑖 , 𝑍𝐴𝑛

𝑖 , Σ𝐶 = 𝐶𝑜𝑣(𝑍𝐶𝑛
𝑖 , 𝑍𝐶𝑛

𝑖 )

Genomic Regions



Causation Test



𝑿 (A segment of sequence, gene, risk factor) 

Embedding (𝒉𝟎)

Transformer

𝒉𝑳
𝒛

Discriminator

(෡𝒀, 𝒉𝑳)

Real (𝒀, 𝒉𝑳) 

Real or Fake?

(෡𝒀, 𝒉𝑳)

𝑫𝑿→𝒀 = {𝒉𝒊
𝑳, ෡𝒀𝒊 = 𝑮 𝒁𝒊, 𝒉𝒊

𝑳 , 𝒊 = 𝟏, … , 𝒏}

෡𝒀 = 𝑮(𝒁, 𝒉𝒍)

𝑫𝒕 = 𝒉𝒊
𝑳, 𝒀𝒊, 𝒊 = 𝟏, … , 𝒏  

𝑫 = { ෡𝒀𝟏, 𝟏 , … , ෡𝒀𝒏, 𝟏 ∪ 𝒀𝟏, 𝟎 , … , 𝒀𝒏, 𝟎 }

𝒍 = ቊ
𝟏 ෡𝒀𝒊

𝟎 𝒀𝒊

Two Sample Test

= { 𝒛𝟏, 𝒍𝟏 , … , 𝒛𝟐𝒏, 𝒍𝟐𝒏 }

𝑻𝑪(𝑿→𝒀) =
𝟏

𝒏𝒕𝒆
෍

(𝒉𝒊,𝒍𝒊)∈𝑫𝒕𝒆

𝒘𝒊

𝒘𝒊 = 𝑰[𝑰 𝒇 𝒉𝒊 >
𝟏

𝟐
= 𝒍𝒊] 

𝑻 )𝒄(𝑿→𝒀 ~𝟎. 𝟓, 𝑿 → 𝒀

  𝑿 𝒄𝒂𝒖𝒔𝒆𝒔 𝒀. 

Pair-wise causal analysis (GAN)

Language Model



Mutaformer

SNVs
nonsense mutation

Missense Mutation

Copy Number Variation

Insertion Variation

Duplication

Noncoding Mutation

Gene

Prediction

Association

Causation

Generalist Model for mutation, gene expression and Image



Apply Causal Methods to Foundation Model
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