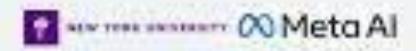
General Artificial Intelligence (1) SAIR 2-03 Objective Driven Artificial Intelligence and Deep Survival Analysis

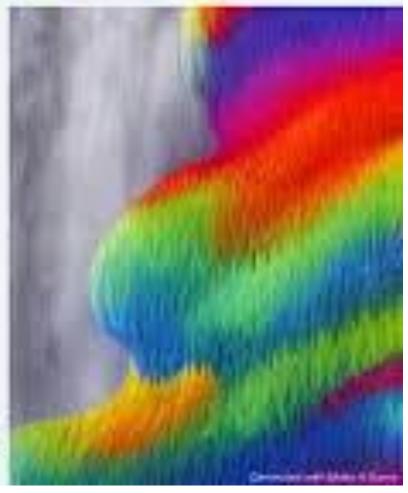
Momiao Xiong
Society of Artificial Intelligence Research

Objective-Driven AI

Towards AI systems that can learn, remember, reason, plan, have common sense, yet are steerable and safe

Yann LeCun New York University Meta - Fundamental Al Research





MIT 2023-07-21 Objective-Driven AI

Towards AI systems that can learn,

remember, reason, plan, have common sense, yet are steerable and safe

MIT

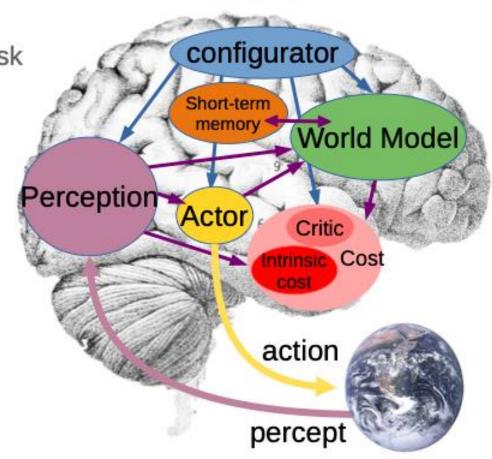
Humans and animals have common sense There behavior is driven by objectives

Yann LeCun
New York University
Meta – Fundamental Al Research

https://drive.google.com/file/d/1wzHohvoSgKGZvzOWqZybjm4M4veKR6t3/view

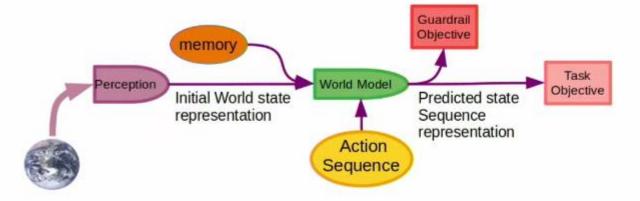
Modular Cognitive Architecture for Objective-Driven Al

- Configurator
 - Configures other modules for task
- Perception
 - Estimates state of the world
- World Model
 - Predicts future world states
- Cost
 - Compute "discomfort"
- Actor
 - Find optimal action sequences
- Short-Term Memory
 - Stores state-cost episodes



One of Cost in human: Survival Time

- Y. LeCun
- ▶ Perception: Computes an abstract representation of the state of the world
- Possibly combined with previously-acquired information in memory
- World Model: Predict the state resulting from an imagined action sequence
- ► Task Objective: Measures divergence to goal
- Guardrail Objective: Immutable objective terms that ensure safety
- Operation: Finds an action sequence that minimizes the objectives



Deep Survival Analysis Goal: Make Our Life Longer

Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC medical research methodology, 18(1):24, 2018.

Time to- event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.

1. Basic Concepts

1) Survival Time, Censoring Time and Their Distributions

Initially, assume that survival time T is continuous. Define $f_T(t)$ and $F_T(t) = P(T \le t)$ be its density and cumulative distribution function, respectively. Then, the survival function of T is defined as

$$S_T(t) = P(T > t) = 1 - F_T(t)$$
 (1)

The hazard rate is defined as

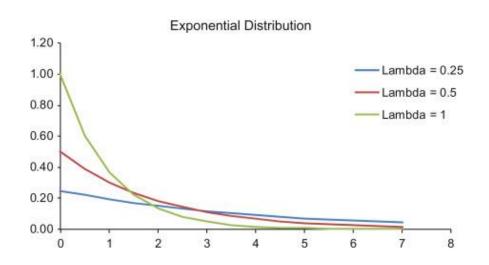
$$h_T(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(t \le T < t + \Delta t | T \ge t) = \frac{f_T(t)}{S_T(t)}$$
 (2)

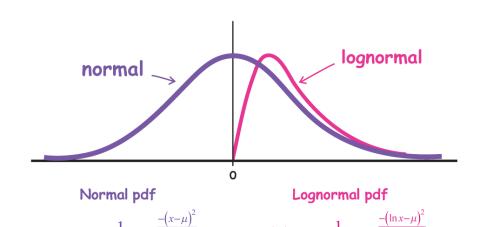
which is the instantaneous risk of the event occurring given it has not yet occurred at time t.

Taking derivative in equation (1) yields

$$f_T(t) = -\frac{dS_T(t)}{dt} \tag{3}$$

Typical Distribution Examples





$$f(t,\lambda) = \begin{cases} \lambda e^{-\lambda t} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

0.5

0.0

0.5

1.0

Weibull distribution

$$f(t; \lambda, k) = \begin{cases} \frac{k}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1} e^{-\left(\frac{t}{\lambda}\right)^{k}} & t \ge 0\\ 0 & t < 0 \end{cases}$$

1.5

2.0

2.5

Finally, the cumulative hazard, defined as

$$H_{T}(t) = \int_{0}^{t} h_{T}(u) du = \int_{0}^{t} \frac{f_{T}(u)}{S_{T}(u)} du$$
Use equation (2)
$$= -\int_{0}^{t} \frac{dS_{T}(u)}{S_{T}(u)} = -\int_{0}^{t} d\log S_{T}(u) = -\log S_{T}(u) \Big|_{0}^{t} = -\log S_{T}(t)$$
(4)

Use equation (3)

$$S_T(t) = e^{-H(t)}$$

With discrete event times, the discrete hazard

$$h_T(t) = P(T = t | T \ge t) \tag{5}$$

is the probability of the event occurring in the time interval t conditional upon the individual still being alive at the beginning of t.

This gives rise to the discrete-time survival probability

$$S_T(t) = P(T > t) = \prod_{j=1}^{t} (1 - h_T(j))$$
 (6)

2. Framework of Survival Analysis

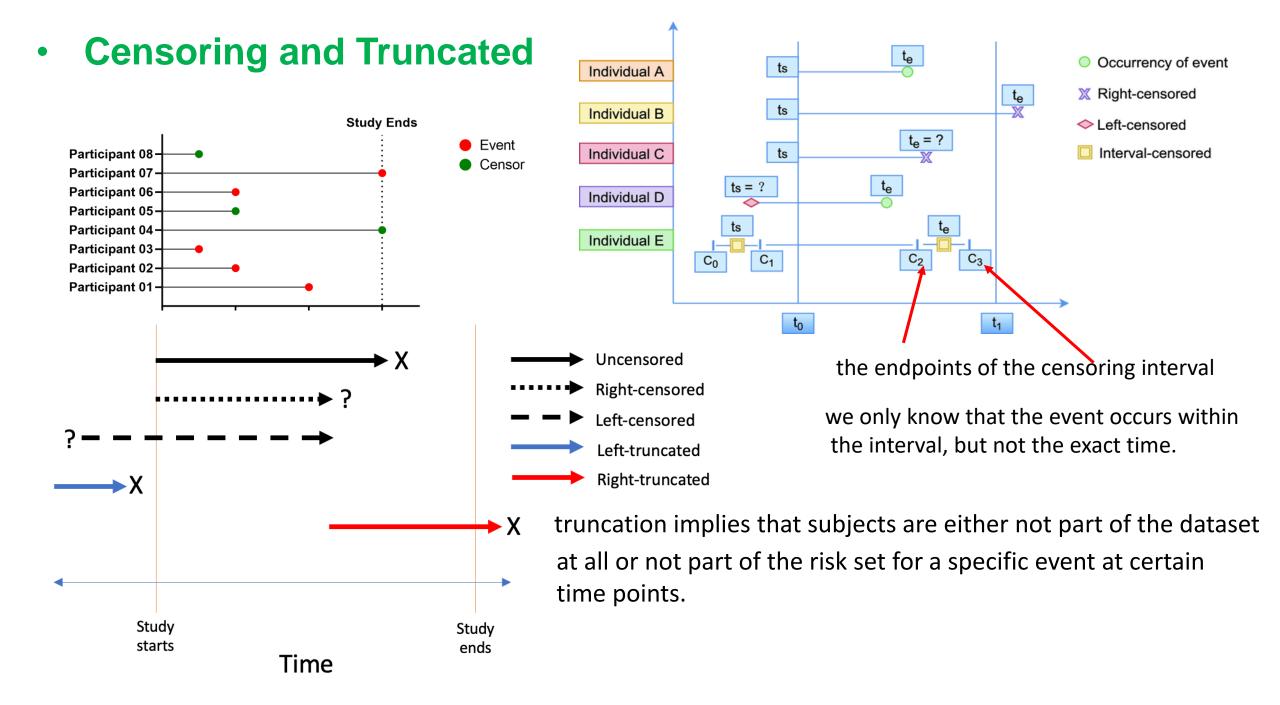
n: a sample of size

 $i \in \{1,2,...,n\}$: individual or subject

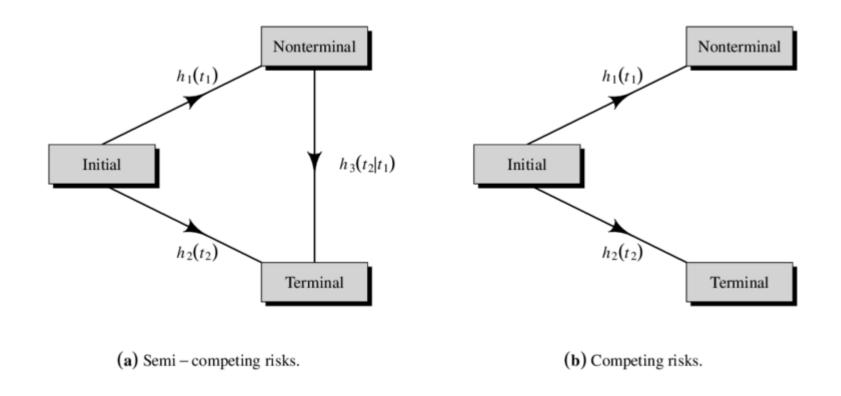
 $T_i > 0$: the time until the event of interest for subject *i* occurs.

 X_i : Covariates

 δ_i : Indicator, denotes whether it is censored or not.

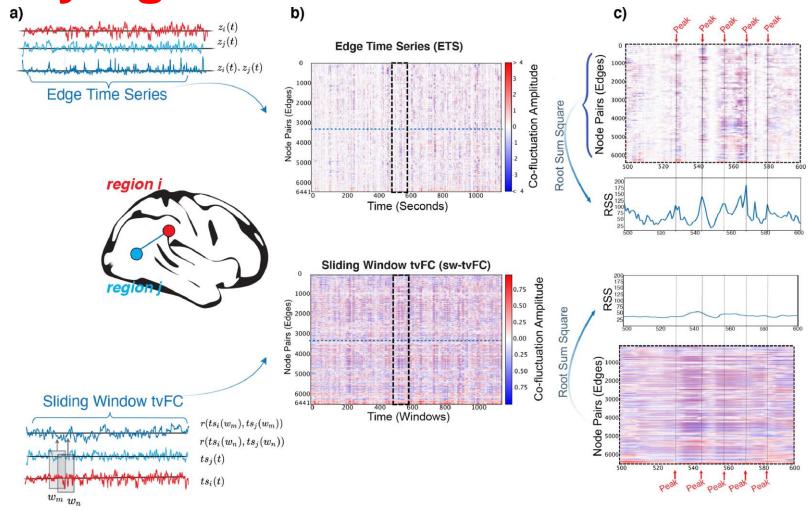


Competing Risk

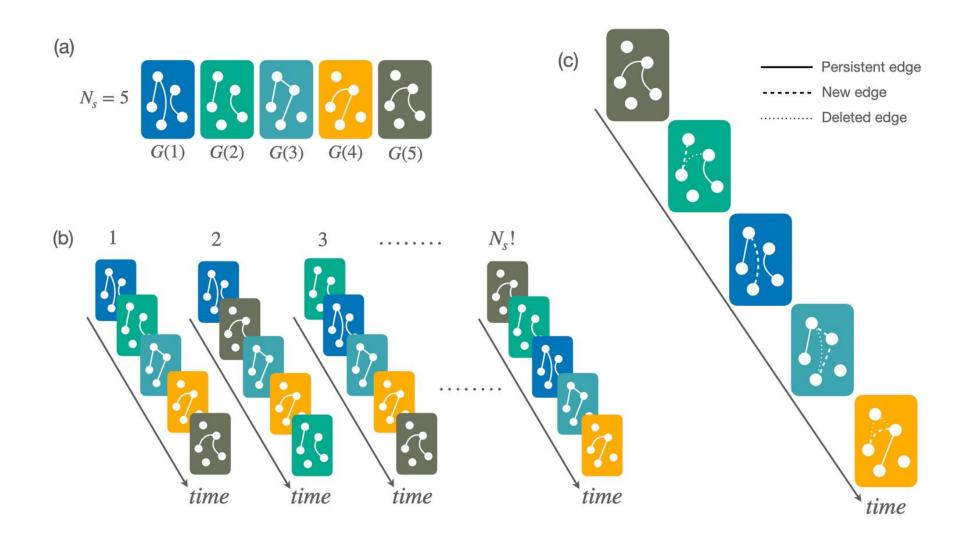


Alvares, D. Semi CompRisks: An R Package for the Analysis of Independent and Cluster-correlated Semi-competing Risks Data. 2019

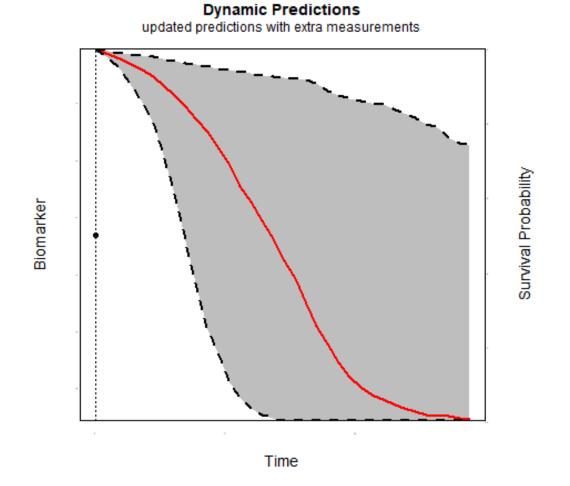
Varying Features and Covariates



Esfahlani FZ et al. 2022. Edge-centric analysis of time-varying functional brain networks with applications in autism spectrum disorder

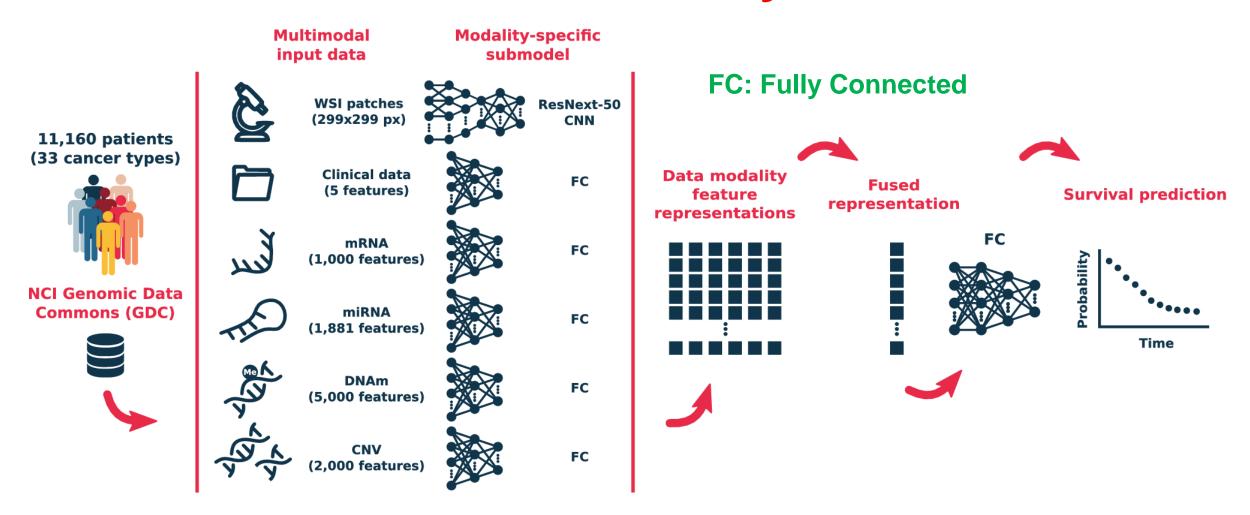


Mingueza FB et al. 2023. Characterization of interactions' persistence in time-varying networks



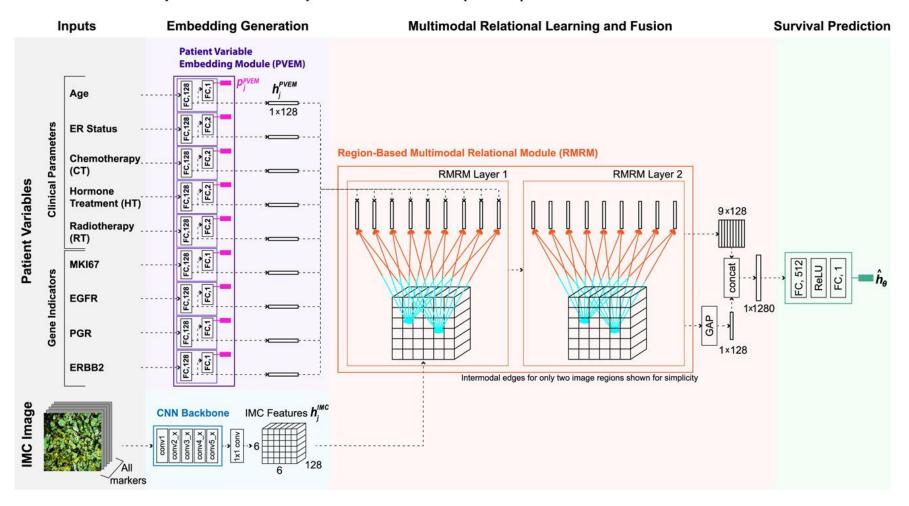
Individualized Predictions, Time-varying Effects and Time-varying Covariates

2. Multimodality

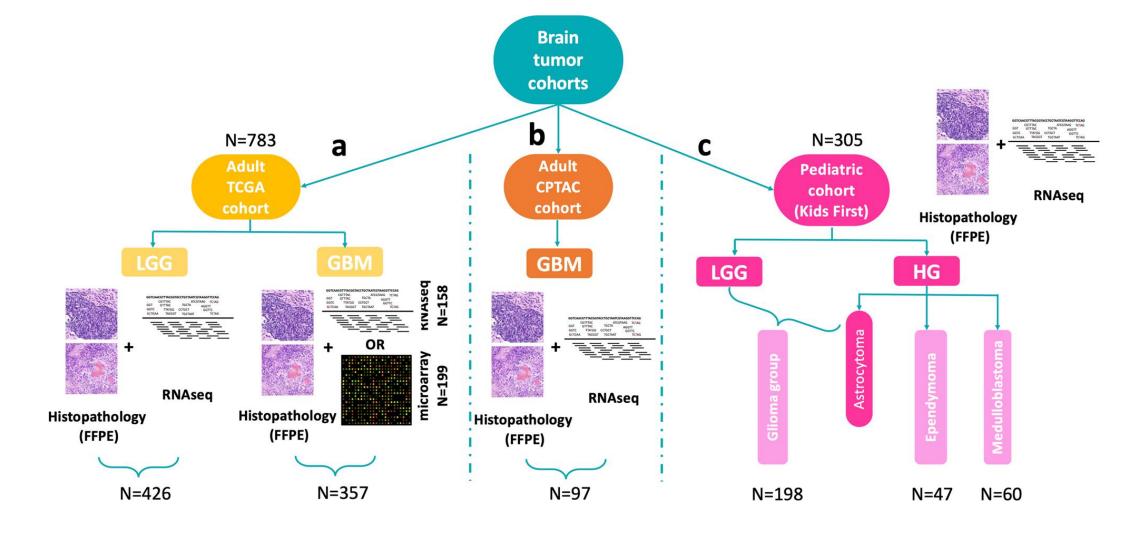


Luís A et al. 2021, Long-term cancer survival prediction using multimodal deep learning

Deep Multimodal Graph-Based Network (DMGN) for Cancer Survival Prediction

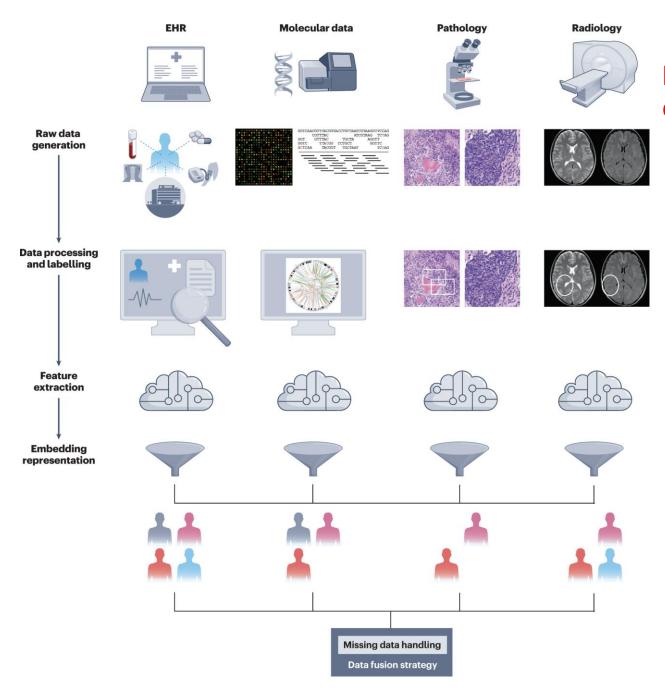


Fu et al. 2023. Deep multimodal graph-based network for survival prediction from highly multiplexed images and patient variables



Steyaert et al. 2023. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors

Code are available on GitHub at https://github.com/gevaertlab/MultiModalBrainSurvival and Zenodo at https://doi.org/10.5281/zenodo.7644876.



Multimodal data fusion for cancer biomarker discovery with deep learning.

nature machine intelligence 5, pages351–362 (2023)

Technical Challenges: Whole Slide Analysis Phenotypic Data (Morphological Level) Training with limited datasets Immunofluorescence IHC H&E Subjective labeling bias Multimodal data fusion strategies Model interpretability Integrative Clinical **Quantitative Spatial Analysis** Genotype Phenotype **Outcomes** Deep Correspondence **Early** Learning-Diagnosis based Multimodal **Prognosis Fusion Molecular Biomarkers** Response to **Treatment** Prediction Survival 25 Prediction **Genotypic Data (Molecular Level) Patient Stratification Transcriptomic Proteomics Metabolomics** Integrative **Biomarker** RNA DNA Discovery Metabolites **Proteins**

Mahmood Lab Al for Pathology Image Analysis

3. Estimation

Notations

 y_i : the observed event time of individual i = 1, ..., n

 x_i : Covariates or features for individual i

 δ_i : Indicator variable. $\delta_i=1$, indicates that the survival time is observed, $\delta_i=0$ indicates that the individual i is censored.

Parametric Estimation

Define the density function for an event at time *t as*

$$f(t|\theta), t \ge 0, \theta = \theta(x) = (g_1(x, \beta_1), g_2(x, \beta_2), ...)$$
 (7)

where $g_1(.,.), g_2(.,.)$ are the real-valued functions of covariates and parameters $\beta_1, \beta_2, ...,$

Likelihood Function

Let O, C, L_c be the sets of observed event times, right-censored, and left-censored observations, respectively.

The likelihood function is defined as

$$L(\theta) = \prod_{i \in O} f(y_i) \prod_{j \in C} S(y_j) \prod_{k \in L_C} (1 - S(y_k))$$
 (8)

Using equation (4), we obtain

$$S(t) = e^{-\int_0^t h(u)du} \tag{9}$$

Combining equations (2), (8) and (9), we can replace equation (8) by

$$L(\theta) = \prod_{i \in O} h(y_i) e^{-\int_0^{y_i} h(u) du} \prod_{j \in C} e^{-\int_0^{y_j} h(u) du} \prod_{k \in L_C} \left(1 - e^{-\int_0^{y_k} h(u) du} \right)$$
(10)

Thus, the likelihood can always be expressed in terms of only the hazard rate.

Full Likelihood Function

Right Censoring

 T^* : True event time

T: Observed event time.

 C^* : the censoring time

right-censored event time: $T = \min(T^*, C^*)$

Full Likelihood

$$L = \prod_{i=1}^{n} f(T_{i}|X_{i})^{\delta_{i}} S(T_{i}|X_{i})^{1-\delta_{i}}$$

$$= \prod_{i=1}^{n} h(T_{i}|X_{i})^{\delta_{i}} e^{-H(T_{i}|X_{i})}$$
(11)

the Cox PH regression models

the Cox PH regression models the hazard rate at time t, conditional on features x, as the product of a non-parametrically estimated baseline hazard $h_0(t)$ and the exponentiated log-risk $\eta = g(x, \beta)$:

$$h(t|X) = h_0(t)\exp(\eta = g(X,\beta))$$
(12)

Feature effects are multiplicative with respect to the hazard rate independently of time, yielding proportionality of hazards. the relative risk function: $e^{g(X,\beta)}$

Log Partial Likelihood Function

Partial likelihood estimation uses the product of conditional densities as the density of the joint conditional distribution.

$$l(\beta) = \sum_{m=1}^{M} \left(g(X_{(m)}, \beta) - \log \sum_{j \in R(t_{(m)})} \exp(g(X_j, \beta)) \right)$$
 (13) where $t_{(m)}$ is the m th ordered event $(m \in \{1, \ldots, M\}), R(t_{(m)})$ denotes the risk

where $t_{(m)}$ is the mth ordered event $(m \in \{1, \ldots, M\})$, $R(t_{(m)})$ denotes the risk set at that time point, and $X_{(m)}$ is the feature vector of the individual experiencing the event at $t_{(m)}$.

Or

$$L_{Cox} = \prod_{m} \left(\frac{\exp(g(X_i, \beta))}{\sum_{j \in R(t_m)} \exp(g(X_j, \beta))} \right)^{\delta_m}$$
(14)

and the negative partial log-likelihood can then be used as a loss function

$$loss = \sum_{m} \delta_{m} \log \left(\sum_{j \in R(t_{m})} \exp(g(X_{j}, \beta) - g(X_{m}, \beta)) \right)$$
 (15)

Linear Functions

Define linear function

$$g(X,\beta) = X^T \beta$$

The log partial likelihood function is reduced to

$$l(\beta) = \sum_{m=1}^{M} \left(X_{(m)}^{T} \beta - \log \sum_{j \in R(t_{(m)})} \exp(X_{j}^{T} \beta) \right)$$
(16)

Deep Survival Analysis

Proportional and non-proportional extensions of the Cox model.
 Kvamme et al. 2019. Time-to-Event Prediction with Neural Networks and Cox Regression

A python package for the proposed methods is available at https://github.com/havakv/pycox.

Batch as a Risk Set

As the loss in (14) sums over risk sets $R(t_m)$, which can be as large as the full data set, it cannot be computed in batches. Nevertheless, it is possible to do batched iterations by subsampling the data set (to a batch) and restrict the set $R(t_m)$ to only contain individuals in the current batch.

This scales well for proportional methods, but would be very computationally expensive for our non-proportional extension. Hence, propose an approximation of the loss that is easily batched. Weighting likelihood in equation (14) yields

$$L_{Cox} = \prod_{m=1}^{M} \left(\frac{\exp(g(X_m, \beta))}{w_m \sum_{j \in \widetilde{R}(t_m)} \exp(g(X_j, \beta))} \right)^{\delta_m}, \widetilde{R}(t_m) \text{ is a subset of } R(t_m)$$
 (17)

which can be further simplified to

$$loss = \frac{1}{n} \sum_{m:\delta_m=1} \log \left(\sum_{j \in \tilde{R}(t_m)} \exp(g(X_j, \beta) - g(X_m, \beta)) \right)$$
 (18)

where n denotes the number of events in the data set. We find that it is often sufficient to sample only one individual j from the risk set, which gives us the loss

$$loss = \frac{1}{n} \sum_{m:\delta_m = 1} \log \left(1 + exp(g(X_j, \beta) - g(X_m, \beta)) \right), j \in R(t_m) - \{m\}$$

$$1 = \exp((g(X_m, \beta) - g(X_m, \beta)))$$
(19)

Non-Proportional Cox-Time

The proportionality assumption of the Cox model can be rather restrictive. We now let the relative risk function depend on time.

$$h(t|X) = h_0(t)\exp(\eta = g(t, X, \beta))$$
(20)

loss function:

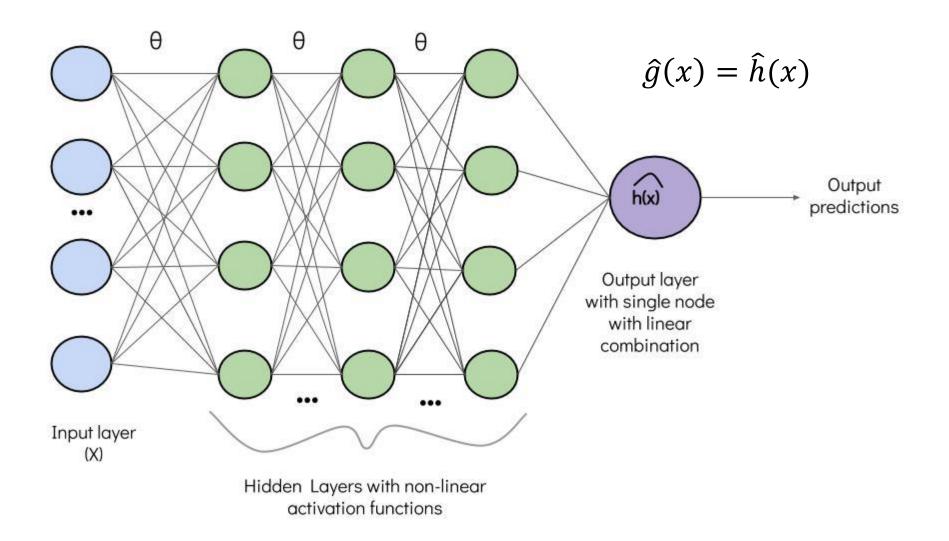
$$loss = \frac{1}{n} \sum_{m:\delta_m = 1} \log \left(\sum_{j \in \tilde{R}(t_m)} \exp(g(T_m, X_j, \beta) - g(T_m, X_m, \beta)) \right)$$
 (21)

Define the penalty:

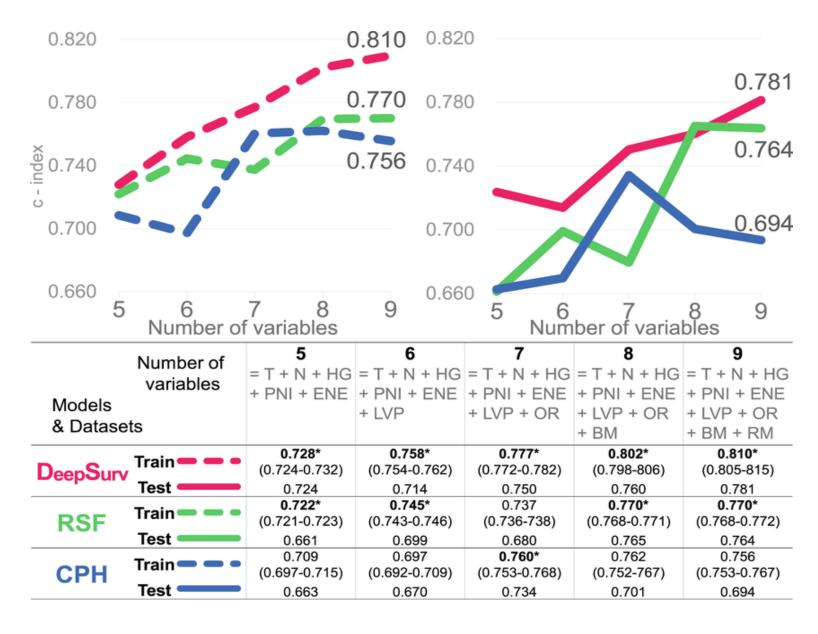
Penalty=
$$\alpha \sum_{m:\delta_m=1} \sum_{i\in \tilde{R}(t_m)} |g(T_m, X_i, \beta)|$$
 (22)

Then, we obtain the final loss function

$$\mathcal{L} = \frac{1}{n} \sum_{m:\delta_m=1} \log \left(\sum_{j \in \tilde{R}(t_m)} \exp(g(T_m, X_j, \beta) - g(T_m, X_m, \beta)) \right) + \alpha \sum_{m:\delta_m=1} \sum_{j \in \tilde{R}(t_m)} |g(T_m, X_j, \beta)|$$
 (23)

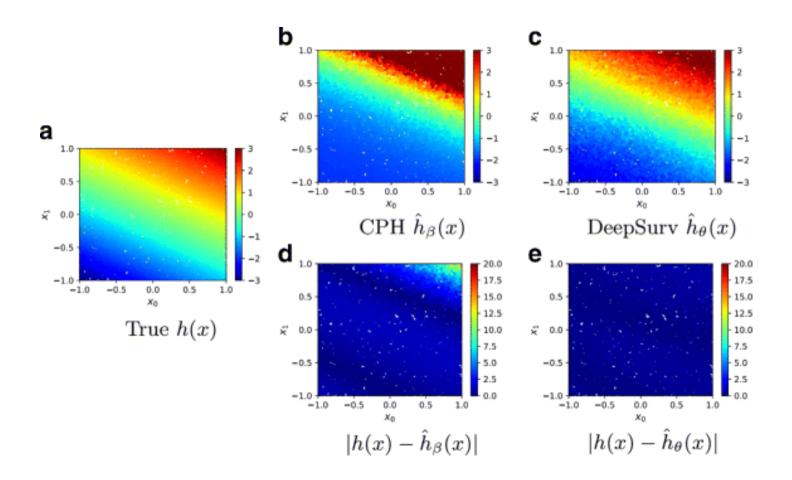


Löschmann and Smorodina, 2020. Deep Learning for Survival Analysis

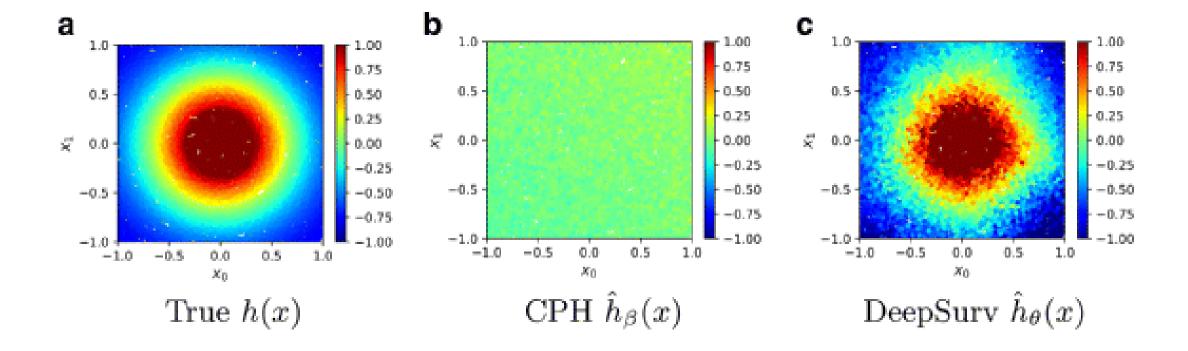


the C-index estimates
the probability that, for a
random pair of individuals, the
predicted survival times of the
two individuals have the same
ordering as their true survival
times

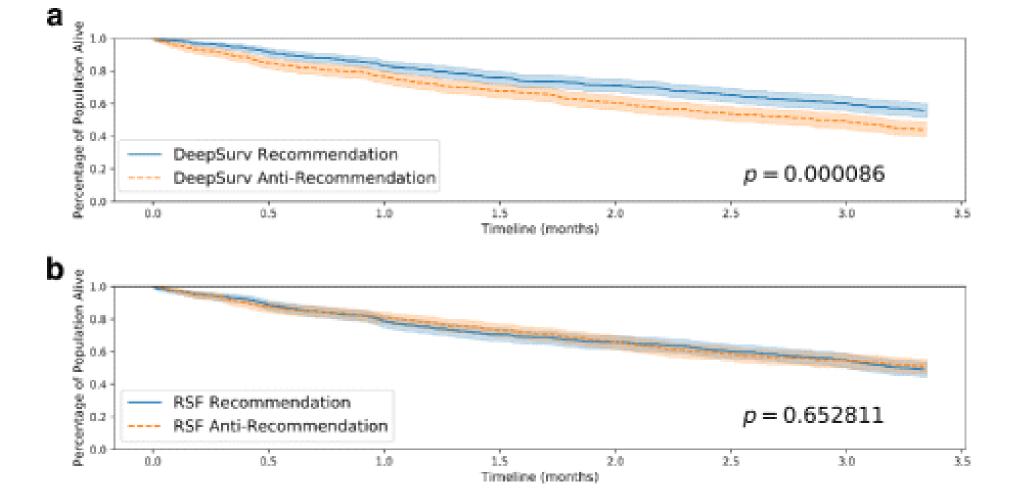
Performance of DeepSurv, RSF, and CPH model in terms of c-index (95%.)



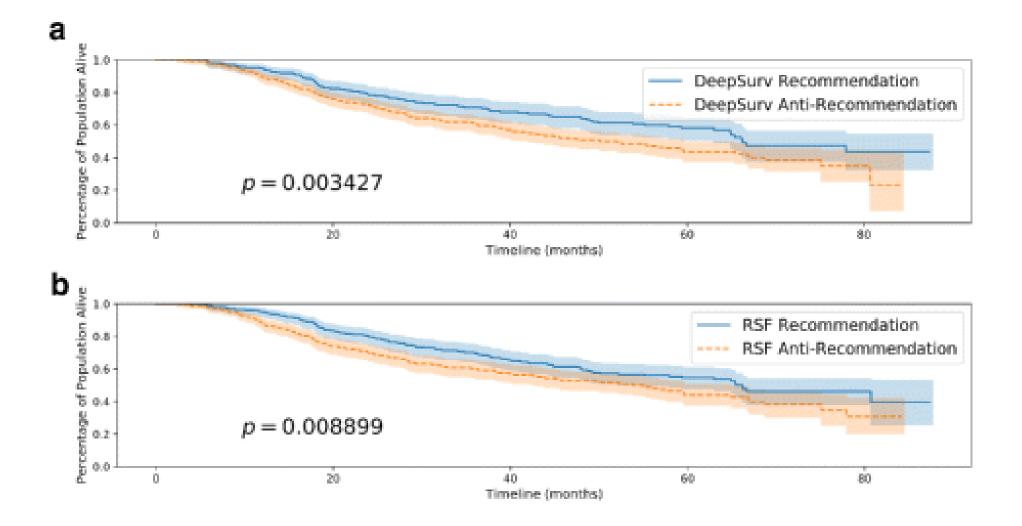
Löschmann and Smorodina, 2020. Deep Learning for Survival Analysis



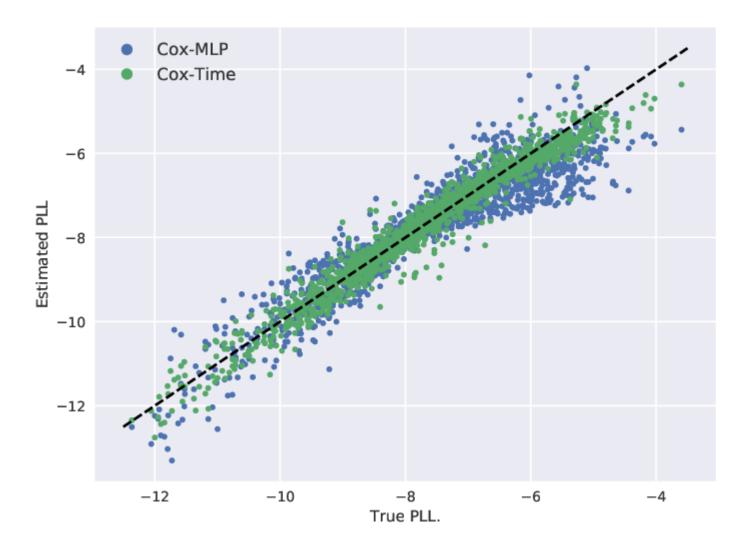
Löschmann and Smorodina, 2020. Deep Learning for Survival Analysis



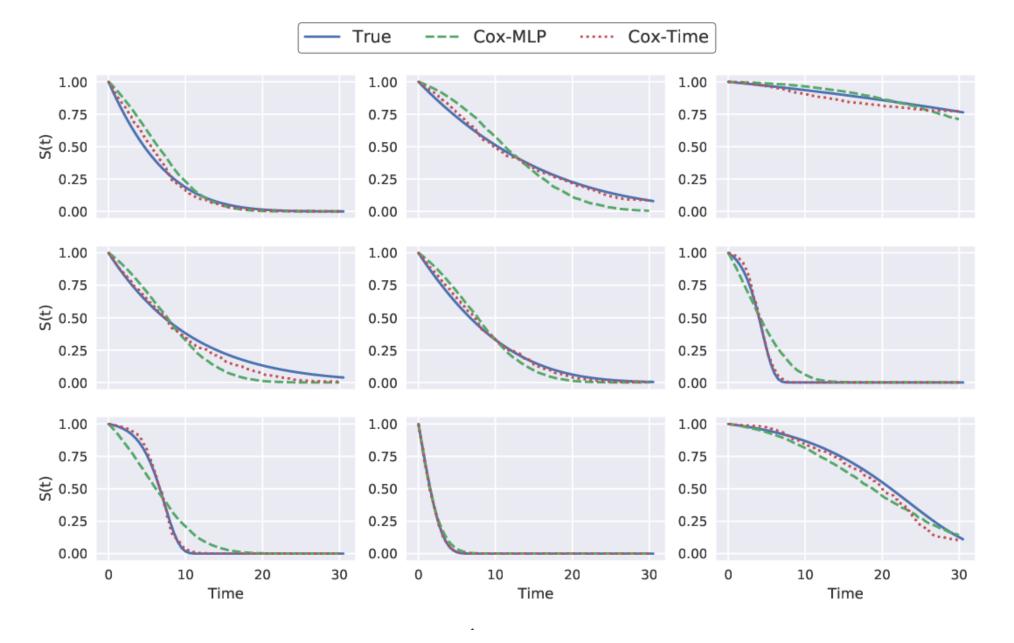
Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.



Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.

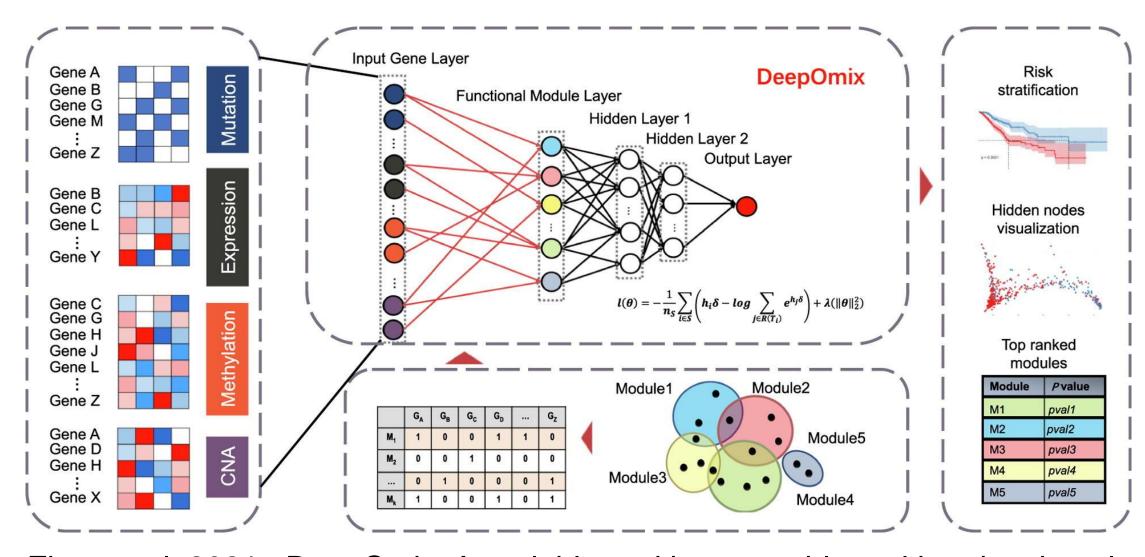


Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.

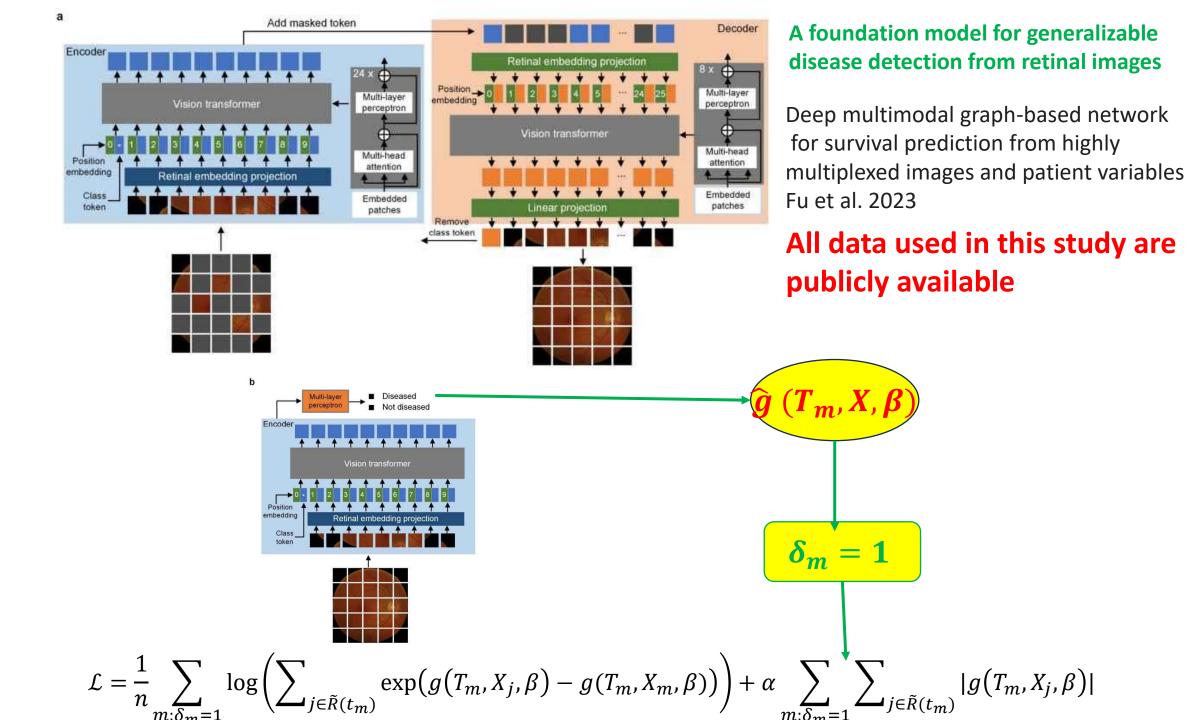


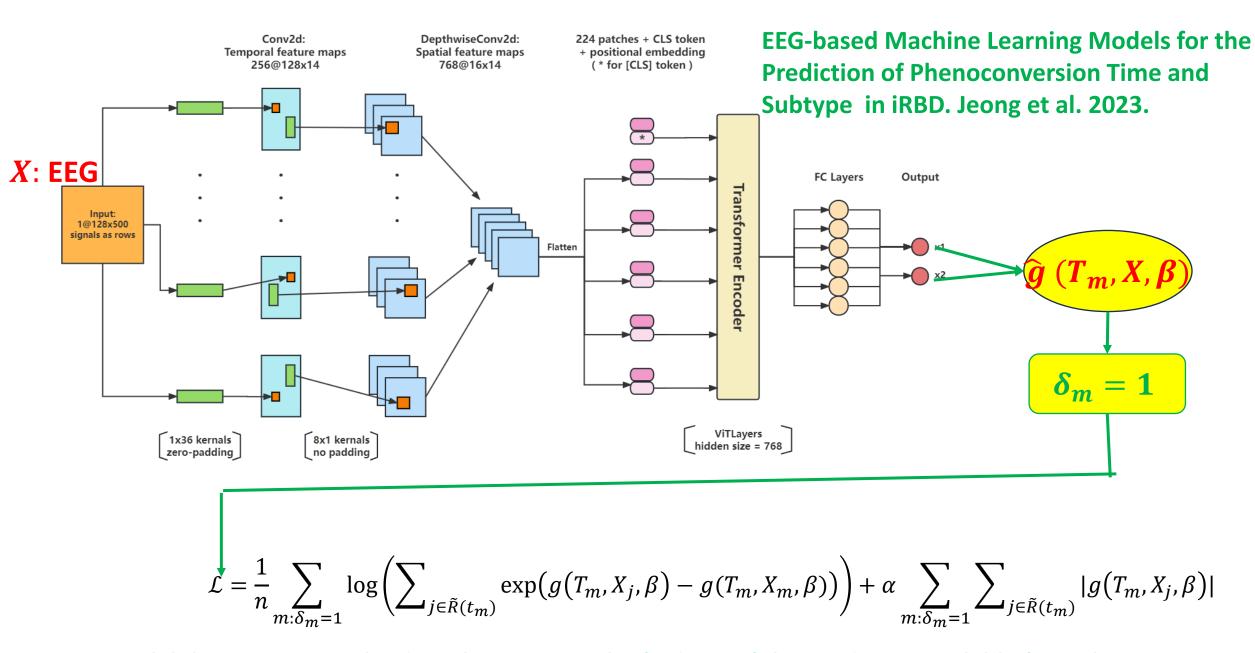
Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.

Multimodal Survival Analysis

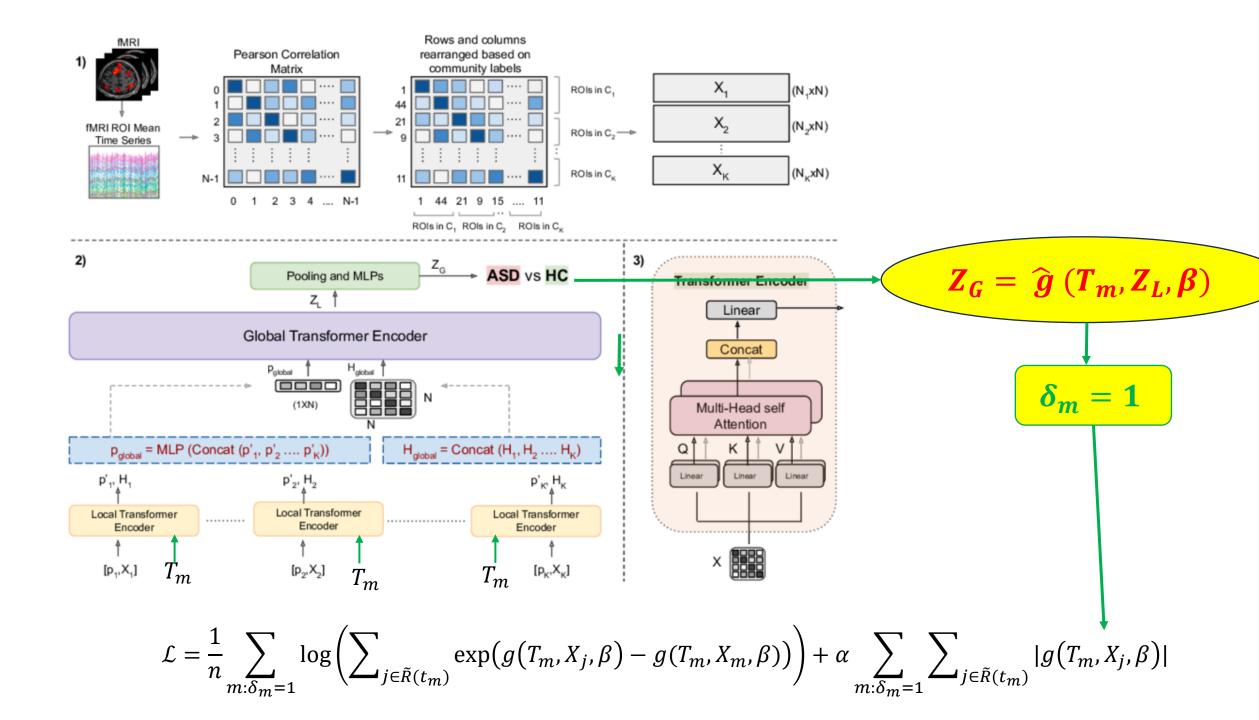


Zhao et al. 2021. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis





Data availability statement The data that support the findings of this study are available from the corresponding author upon reasonable request.



Overall Survival Time Prediction of Glioblastoma on Preoperative MRI Using Lesion Network Mapping

Feng Wu

Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230052, China

Data Availability Statement: The dataset generated during and/or analyzed during the current study are not publicly available due to the clinical and confidential nature of the material but can be made available from the corresponding author on reasonable request.

Brain age prediction using fMRI network coupling in youths and associations with 2 psychiatric symptom

Deep multimodal graph-based network for survival prediction from highly multiplexed images and patient variables.

The source code is available at https://github.com/xhelenfu/DMGN_Survival_Prediction.