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Humans and animals have common sense
There behavior is driven by objectives 



One of Cost in human: Survival Time





Deep Survival Analysis

Goal: Make Our Life Longer

Deepsurv: personalized treatment recommender system using a cox proportional 

hazards deep neural network. BMC medical research methodology, 18(1):24, 2018.

Time to- event prediction with neural networks and cox regression. 

Journal of machine learning research, 20(129): 1–30, 2019.



1. Basic Concepts 

1) Survival Time, Censoring Time and Their  Distributions

Initially, assume that  survival time 𝑇 is continuous. Define  𝑓𝑇(𝑡) and 𝐹𝑇 𝑡 =
𝑃(𝑇 ≤ 𝑡)  be its density and cumulative distribution function, respectively. Then, 

the survival function of 𝑇 is defined as

𝑆𝑇 𝑡 = 𝑃 𝑇 > 𝑡 = 1 − 𝐹𝑇(𝑡)
(1)

The hazard rate is defined as

ℎ𝑇 𝑡 = lim
∆𝑡→0

1

∆𝑡
𝑃 𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡 𝑇 ≥ 𝑡 =

𝑓𝑇(𝑡)

𝑆𝑇(𝑡)
(2)

which is the instantaneous risk of the event occurring given it has not yet 

occurred at time t.

Taking derivative in equation (1) yields 

𝑓𝑇 𝑡 = −
𝑑𝑆𝑇(𝑡)

𝑑𝑡
(3)



• Typical Distribution Examples

𝑓 𝑡, 𝜆 = ቊ𝜆𝑒−𝜆𝑡 𝑡 ≥ 0
0 𝑡 < 0

Weibull 
distribution

𝑓 𝑡; 𝜆, 𝑘 = ൞
𝑘

𝜆

𝑡

𝜆

𝑘−1

𝑒
−

𝑡
𝜆

𝑘

𝑡 ≥ 0

0 𝑡 < 0



Finally, the cumulative hazard, defined as

𝑯𝑻 𝒕 = න
0

𝑡

ℎ𝑇 𝑢 𝑑𝑢 = න
0

𝑡 𝑓𝑇(𝑢)

𝑆𝑇(𝑢)
𝑑𝑢 Use equation (2)

= − න
0

𝑡 𝑑𝑆𝑇 𝑢

𝑆𝑇 𝑢
= − න

0

𝑡

𝑑 log 𝑆𝑇 𝑢 = − ቚlog 𝑆𝑇 𝑢
0

𝑡
= − 𝐥𝐨𝐠 𝑺𝑻(𝒕)

Use equation (3)

(4)

𝑆𝑇 𝑡 = 𝑒−𝐻(𝑡)



With discrete event times, the discrete hazard

ℎ𝑇 𝑡 = 𝑃(𝑇 = 𝑡|𝑇 ≥ 𝑡)

is the probability of the event occurring in the time interval t conditional upon 

the individual still being alive at the beginning of t. 

This gives rise to the discrete-time survival probability

𝑆𝑇 𝑡 = 𝑃 𝑇 > 𝑡 = ෑ
𝑗=1

𝑡

(1 − ℎ𝑇 𝑗 )

(5)

(6)

2.  Framework of Survival Analysis

𝑛: a sample of size

𝑖 ∈ 1,2, … , 𝑛 : individual or subject

𝑇𝑖 > 0 ∶ the time until the event of interest for subject 𝑖 occurs.

𝑋𝑖: Covariates

𝛿𝑖: Indicator, denotes whether it is censored or not.



• Censoring and Truncated

the endpoints of the censoring interval

we only know that the event occurs within
 the interval, but not the exact time.

truncation implies that subjects are either not part of the dataset

at all or not part of the risk set for a specific event at certain
time points.



Competing Risk

Alvares, D. Semi CompRisks: An R Package for the Analysis of Independent and 

Cluster-correlated Semi-competing Risks Data. 2019



Varying Features and Covariates

Esfahlani  FZ et al. 2022 . Edge-centric analysis of time-varying functional brain networks with applications in autism 
spectrum disorder



Mingueza FB et al. 2023. Characterization of interactions’ persistence in time-varying networks



Individualized Predictions, Time-varying Effects and Time-varying Covariates



2. Multimodality

Luís A et al. 2021,    Long-term cancer survival prediction using multimodal deep learning

FC: Fully Connected



Fu et al. 2023. Deep multimodal graph-based network for survival prediction from highly 

multiplexed images and patient variables



Steyaert et al. 2023. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors

Code are available on GitHub at https://github.com/gevaertlab/MultiModalBrainSurvival 

and Zenodo at https://doi.org/10.5281/zenodo.7644876.



Multimodal data fusion for cancer biomarker 

discovery with deep learning. 

5, pages351–362 (2023)



Mahmood Lab
AI for Pathology Image Analysis



3. Estimation

• Notations

𝑦𝑖:  the observed event time of individual 𝑖 = 1, … , 𝑛

𝑥𝑖: Covariates or features for individual 𝑖

𝛿𝑖: Indicator variable. 𝛿𝑖 = 1, indicates that the survival time is observed, 𝛿𝑖 = 0
      indicates that the individual 𝑖 is censored.

• Parametric Estimation

Define the density function for an event at time 𝑡 𝑎𝑠 

𝑓 𝑡 𝜃 , 𝑡 ≥ 0, 𝜃 = 𝜃 𝑥 = (𝑔1 𝑥, 𝛽1 , 𝑔2 𝑥, 𝛽2 , … )

where  𝑔1 . , . , 𝑔2(. , . ) are the real-valued functions of covariates and parameters 

𝛽1, 𝛽2, … , 

(7)



• Likelihood Function

Let O, C, 𝐿𝑐 be the sets of observed event times, right-censored, and left-censored 

observations, respectively.

The likelihood function is defined as 

𝐿 𝜃 = ෑ

𝑖∈𝑂

𝑓(𝑦𝑖) ෑ

𝑗∈𝐶

𝑆(𝑦𝑗) ෑ

k∈𝐿𝑐

1 − 𝑆(𝑦𝑘) (8)

Using equation (4), we obtain  

𝑆 𝑡 = 𝑒− 0׬
𝑡

ℎ 𝑢 𝑑𝑢 (9)

Combining equations (2), (8) and (9), we can replace equation (8) by

 
𝐿 𝜃 = ෑ

𝑖∈𝑂

ℎ(𝑦𝑖)𝑒− 0׬
𝑦𝑖 ℎ 𝑢 𝑑𝑢 ෑ

𝑗∈𝐶

𝑒− 0׬

𝑦𝑗
ℎ 𝑢 𝑑𝑢 ෑ

k∈𝐿𝑐

1 − 𝑒− 0׬
𝑦𝑘 ℎ 𝑢 𝑑𝑢

(10)

Thus, the likelihood can always be expressed in terms of only the hazard rate.



Full Likelihood Function
• Right Censoring

𝑇∗: True event time
𝑇:  Observed event time. 
𝐶∗: the censoring time
right-censored event time: 𝑇 = min(𝑇∗, 𝐶∗)

• Full Likelihood

𝐿 = ෑ
𝑖=1

𝑛

𝑓(𝑇𝑖|𝑋𝑖)𝛿𝑖𝑆(𝑇𝑖|𝑋𝑖)1−𝛿𝑖

= ෑ
𝑖=1

𝑛

ℎ(𝑇𝑖|𝑋𝑖)𝛿𝑖𝑒−𝐻(𝑇𝑖|𝑋𝑖) (11)



• the Cox PH regression models

the Cox PH regression models the hazard rate at time t, conditional on features 

x, as the product of a non-parametrically estimated baseline hazard ℎ0(𝑡) and 

the exponentiated log-risk η = g(x, β):

ℎ 𝑡 𝑋 = ℎ0 𝑡 exp(𝜂 = 𝑔 𝑋, 𝛽 ) (12)

Feature effects are multiplicative with respect to the hazard rate independently 

of time, yielding proportionality of hazards. :𝒆𝒈(𝑿,𝜷)

• Log Partial Likelihood Function
Partial likelihood estimation uses the product of conditional densities as the 

density of the joint conditional distribution. 

𝑙 𝛽 = ෍
𝑚=1

𝑀

𝑔 𝑋 𝑚 , 𝛽 − log ෍

𝑗∈𝑅(𝑡 𝑚 )

exp(𝑔 𝑋𝑗 , 𝛽 ) (13)

where 𝑡(𝑚) is the mth ordered event (m ∈ {1, . . . , M}), 𝑅(𝑡 𝑚 ) denotes the risk 

set at that time point, and 𝑋(𝑚) is the feature vector of the individual experiencing 

the event at 𝑡(𝑚).



• Linear Functions
Define linear function

𝑔 𝑋, 𝛽 = 𝑋𝑇𝛽

The log partial likelihood function is reduced to 

𝑙 𝛽 = ෍
𝑚=1

𝑀

𝑋(𝑚)
𝑇 𝛽 − log ෍

𝑗∈𝑅 𝑡 𝑚

exp(𝑋𝑗
𝑇 𝛽)

(16)

Or

𝐿𝐶𝑜𝑥 = ෑ
𝑚

exp(𝑔 𝑋𝑖 , 𝛽 )

σ𝑗∈𝑅(𝑡𝑚) exp(𝑔 𝑋𝑗 , 𝛽 )

𝛿𝑚

and the negative partial log-likelihood can then be used as a loss function

𝑙𝑜𝑠𝑠 = ෍
𝑚

𝛿𝑚 log ෍
𝑗∈𝑅(𝑡𝑚)

exp 𝑔 𝑋𝑗 , 𝛽 − 𝑔(𝑋𝑚, 𝛽) (15)

(14)



Deep Survival Analysis
• Proportional and non-proportional extensions of the Cox model.

Kvamme et al. 2019.   Time-to-Event Prediction with Neural Networks and 

 Cox  Regression

A python package for the proposed methods is available at https://github.com/havakv/pycox.

• Batch as a Risk Set
As the loss in (14) sums over risk sets 𝑅(𝑡𝑚) , which can be as large as the full 

data set, it cannot be computed in batches. Nevertheless, it is possible to do 

batched iterations by subsampling the data set (to a batch) and restrict the

set 𝑅(𝑡𝑚) to only contain individuals in the current batch.

This scales well for proportional methods, but would be very computationally

expensive for our non-proportional extension. Hence, propose an approximation 

of the loss that is easily batched. Weighting likelihood in equation (14) yields

𝐿𝐶𝑜𝑥 = ς𝑚=1
𝑀 exp(𝑔 𝑋𝑚,𝛽 )

𝑤𝑚 σ
𝑗∈෩𝑅(𝑡𝑚)

exp(𝑔 𝑋𝑗,𝛽 )

𝛿𝑚

, ෨𝑅(𝑡𝑚) is a subset of 𝑅(𝑡𝑚) (17)



𝑙𝑜𝑠𝑠 =
1

𝑛
෍

𝑚:𝛿𝑚=1

log ෍
𝑗∈ ෨𝑅(𝑡𝑚)

exp 𝑔 𝑋𝑗 , 𝛽 − 𝑔(𝑋𝑚, 𝛽)

which can be further simplified to

where 𝑛 denotes the number of events in the data set. We find that it is often 
sufficient to sample only one individual j from the risk set, which gives us the loss 

𝑙𝑜𝑠𝑠 =
1

𝑛
෍

𝑚:𝛿𝑚=1

log 1 + 𝑒𝑥𝑝 𝑔 𝑋𝑗 , 𝛽 − 𝑔(𝑋𝑚, 𝛽) , 𝑗 ∈ 𝑅 𝑡𝑚 − {𝑚}

(18)

(19)

1 = exp( 𝑔 𝑋𝑚, 𝛽 − 𝑔(𝑋𝑚, 𝛽)



• Non-Proportional Cox-Time

The proportionality assumption of the Cox model can be rather restrictive. 

We now let the relative risk function depend on time.

ℎ 𝑡 𝑋 = ℎ0 𝑡 exp(𝜂 = 𝑔 𝑡, 𝑋, 𝛽 ) (20)

loss function:

𝑙𝑜𝑠𝑠 =
1

𝑛
෍

𝑚:𝛿𝑚=1

log ෍
𝑗∈ ෨𝑅(𝑡𝑚)

exp 𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 − 𝑔(𝑇𝑚, 𝑋𝑚, 𝛽) (21)

Define the penalty:

Penalty=𝛼 σ𝑚:𝛿𝑚=1 σ𝑗∈ ෨𝑅(𝑡𝑚) |𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 | (22)

Then, we obtain the final loss function

ℒ =
1

𝑛
෍

𝑚:𝛿𝑚=1

log ෍
𝑗∈ ෨𝑅(𝑡𝑚)

exp 𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 − 𝑔(𝑇𝑚, 𝑋𝑚, 𝛽) + 𝛼 ෍

𝑚:𝛿𝑚=1

෍
𝑗∈ ෨𝑅(𝑡𝑚)

|𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 | (23)



ො𝑔 𝑥 = ෠ℎ(𝑥)

Löschmann and Smorodina, 2020.   Deep Learning for Survival 

Analysis



Performance of DeepSurv, RSF, and CPH model in terms of c-index (95%.)

the C-index estimates

the probability that, for a 

random pair of individuals, the

 predicted survival times of the

two individuals have the same 

ordering as their true survival

 times



Löschmann and Smorodina, 2020.   Deep Learning for Survival Analysis



Löschmann and Smorodina, 2020.   Deep Learning for Survival Analysis



Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.



Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.



Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.



Timeto-event prediction with neural networks and cox regression. Journal of machine learning research, 20(129): 1–30, 2019.



Multimodal Survival Analysis

Zhao et al. 2021.  DeepOmix: A scalable and interpretable multi-omics deep learning 

framework and application in cancer survival analysis



ෝ 𝒈 (𝑻𝒎, 𝑿, 𝜷)

𝜹𝒎 = 𝟏

ℒ =
1

𝑛
෍

𝑚:𝛿𝑚=1

log ෍
𝑗∈ ෨𝑅(𝑡𝑚)

exp 𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 − 𝑔(𝑇𝑚, 𝑋𝑚, 𝛽) + 𝛼 ෍

𝑚:𝛿𝑚=1

෍
𝑗∈ ෨𝑅(𝑡𝑚)

|𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 |

A foundation model for generalizable 
disease detection from retinal images

Deep multimodal graph-based network
 for survival prediction from highly 
multiplexed images and patient variables
Fu et al. 2023

All data used in this study are 
publicly available



ෝ 𝒈 (𝑻𝒎, 𝑿, 𝜷)

ℒ =
1

𝑛
෍

𝑚:𝛿𝑚=1

log ෍
𝑗∈ ෨𝑅(𝑡𝑚)

exp 𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 − 𝑔(𝑇𝑚, 𝑋𝑚, 𝛽) + 𝛼 ෍

𝑚:𝛿𝑚=1

෍
𝑗∈ ෨𝑅(𝑡𝑚)

|𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 |

𝜹𝒎 = 𝟏

Data availability statement The data that support the findings of this study are available from the 
corresponding author upon reasonable request. 

EEG-based Machine Learning Models for the 
Prediction of Phenoconversion Time and 
Subtype  in iRBD. Jeong et al. 2023.

𝑿: EEG



𝒁𝑮 = ෝ 𝒈 (𝑻𝒎, 𝒁𝑳, 𝜷)

𝜹𝒎 = 𝟏

ℒ =
1

𝑛
෍

𝑚:𝛿𝑚=1

log ෍
𝑗∈ ෨𝑅(𝑡𝑚)

exp 𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 − 𝑔(𝑇𝑚, 𝑋𝑚, 𝛽) + 𝛼 ෍

𝑚:𝛿𝑚=1

෍
𝑗∈ ෨𝑅(𝑡𝑚)

|𝑔 𝑇𝑚, 𝑋𝑗 , 𝛽 |

𝑇𝑚 𝑇𝑚 𝑇𝑚



Data Availability Statement: The dataset generated during and/or 

analyzed during the current study are not publicly available due to 

the clinical and confidential nature of the material but can be

made available from the corresponding author on reasonable 

request.

Overall Survival Time Prediction of Glioblastoma on 

Preoperative MRI Using Lesion Network Mapping 

Feng Wu
Department of Electronic Engineering and Information Science, 
University of Science and Technology of China, Hefei, 230052, China

Brain age prediction using fMRI network coupling in youths and 

associations with 2 psychiatric symptom



Deep multimodal graph-based network for survival prediction from 

highly multiplexed images and patient variables. 

The source code is available at 
https://github.com/xhelenfu/DMGN_Survival_Prediction.
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